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Preface

Turbulence is ubiquitous in nature and central to many applications impor-
tant to our life. (It is also a ridiculously fascinating phenomenon.) Obtaining
an accurate prediction of turbulent flow is a central difficulty in such diverse
problems as global change estimation, improving the energy efficiency of en-
gines, controlling dispersal of contaminants and designing biomedical devices.
It is absolutely fundamental to understanding physical processes of geophysics,
combustion, forces of fluids upon elastic bodies, drag, lift and mixing. Deci-
sions that affect our life must be made daily based on predictions of turbulent
flows.

Direct numerical simulation of turbulent flows is not feasible for the fore-
seeable future in many of these applications. Even for those flows for which it
is currently feasible, it is filled with uncertainties due to the sensitivity of the
flow to factors such as incomplete initial conditions, body forces, and surface
roughness. It is also expensive and time consuming–far too time consuming to
use as a design tool. Storing, manipulating and post-processing the mountain
of uncertain data that results from a DNS to extract that which is needed
from the flow is also expensive, time consuming, and uncertain.

The most promising and successful methodology for doing these simula-
tions of that which matters in turbulent flows is large eddy simulation or LES.
LES seeks to calculate the large, energetic structures (the large eddies) in
a turbulent flow. The aim of LES is to do this with complexity-independent
of the Reynolds number and dependent only on the resolution sought. The
approach of LES, developed over the last 35 years, is to filter the Navier–
Stokes equations, insert a closure approximation (yielding an LES model),
supply boundary conditions (called a Near Wall Model in LES), discretize
appropriately and perform a simulation. The first three key challenges of LES
are thus: Do the solutions of the chosen model accurately reflect true flow
averages? Do the numerical solutions generated by the chosen discretization,
reflect solutions of the model? And, With the chosen model and method, how
is simulation to be performed in a time and cost effective manner? Although
all three questions are considered herein, we have focused mostly on the first,
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i.e. the mathematical development of the LES models themselves. The second
and third questions concerning numerical analysis and computational simu-
lation of LES models are essential. However, the numerical analysis of LES
should not begin by assuming a model is a correct mathematical realization
of the intended physical phenomenon (in other words, that the model is well
posed). To do so would be to build on a foundation of optimism. Numerical
analysis of LES models with sound mathematical foundations is an exciting
challenge for the next stage of the LES adventure.

One important approach to unlocking the mysteries of turbulence is by
computational studies of key, building block turbulent flows (as proposed by
von Neumann). The great success of LES in economical and accurate descrip-
tions of many building block turbulent flows has sparked its explosive growth.
Its development into a predictive tool, useful for control and design in com-
plex geometries, is clearly the next step, and possibly within reach in the near
future. This development will require much more experience with practical
LES methods. It will also require fundamental mathematical contributions to
understanding “How”, “Why”, and “When” an approach to LES can work
and “What” is the expected accuracy of the combination of filter, model,
discretization and solver.

The extension of LES from application to fully developed turbulence to
include transition and wall effects and then to the delicate problems of control
and design is clearly the next step in the development of large eddy simulation.
Progress is already being made by careful experimentation. Even as “[The
universe] is written in mathematical language” (Galileo), the Navier–Stokes
equations are the language of fluid dynamics. Enhancing the universality of
LES requires making a direct connection between LES models and the (often
mathematically formidable) Navier–Stokes equations. One theme of this book
is the connection between LES models and the Navier–Stokes equations rather
than the phenomenology of turbulence. Mathematical development will com-
plement numerical experimentation and make LES more general, universal,
robust and predictive.

We have written this book in the hope it will be useful for LES practition-
ers interested in understanding how mathematical development of LES models
can illuminate models and increase their usefulness, for applied mathemati-
cians interested in the area and especially for PhD students in computational
mathematics trying to make their first contribution. One of the themes we
emphasize is that mathematical understanding, physical insight and compu-
tational experience are the three foundations of LES! Throughout, we try to
present the first steps of a theory as simply as possible, consistent with cor-
rectness and relevance, and no simpler. We have tried, in this balancing act,
to find the right level of detail, accuracy and mathematical rigor.

This book collects some of the fundamental ideas and results scattered
throughout the LES literature and embeds them in a homogeneous and rigor-
ous mathematical framework. We also try to isolate and focus on the math-
ematical principles shared by apparently distinct methodologies in LES and
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show their essential role in robust and universal modeling. In part I we re-
view basic facets of on the Navier–Stokes equations; in parts II and III we
highlight some promising models for LES, giving details of the mathematical
foundation, derivation and analysis. In part IV we present some of the diffi-
cult challenges introduced by solid boundaries; part V presents a syllabus for
numerical validation and testing in LES.

We are all too aware of the tremendous breadth, depth and scope of the
area of LES and of the great limitations of our own experience and under-
standing. Some of these gaps are filled in other excellent books on LES. In
particular, we have learned a lot ourselves from the books of Geurts [131],
John [175], Pope [258], and Sagaut [267]. We have tried to complement the
treatment of LES in these excellent books by developing mathematical tools,
methods, and results for LES . Thus, many of the same topics are often treated
herein but with the magnifying glass of mathematical analysis. This treatment
yields new perspectives, ideas, language and illuminates many open research
problems.

We offer this book in the hope that it will be useful to those who will
help develop the field of LES and fill in many of the gaps we have left behind
herein.

It is a pleasure to acknowledge the help of many people in writing this
book. We thank Pierre Sagaut for giving us the initial impulse in the project
and for many detailed and helpful comments along the way. We owe our friend
and colleague Paolo Galdi a lot as well for many exciting and illuminating
conversations on fluid flow phenomena. Our first meeting came through one
such interaction with Paolo. We also thank Volker John, who throughout our
LES adventure has been part of our day to day “battles”.

Our understanding of LES has advanced through working with friends and
collaborators Mihai Anitescu, Jeff Borggaard, Adrian Dunca, Songul Kaya,
Roger Lewandowski, and Niyazi Sahin.

The preparation of this manuscript has benefited from the financial sup-
port of the National Science Foundation, the Air Force office of Scientific
Research, and Ministero dell’Istruzione, dell’Università e della Ricerca.

Pisa, Italy Luigi C. Berselli
Blacksburg, USA Traian Iliescu
Pittsburgh, USA William J. Layton
April, 2005
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1

Introduction

Large Eddy Simulation, LES, is about approximating local, spatial averages
of turbulent flows. Thus, LES seeks to predict the dynamics (the motion)
of the organized structures in the flow (the eddies) which are larger than
some user-chosen length scale δ. Properly, LES was born in 1970 with a re-
markable paper by Deardorff [87] in which the question of closure, boundary
conditions and accuracy of approximation are studied via computational ex-
periments. Since then, LES has undergone explosive development as a com-
putational technology. Such a rapid development has, naturally, raised many
questions in LES, some of which are essentially mathematical in nature. Many
of these mathematical issues in LES are important for advancing practi-
cal computations. Many are also important for broadening the usefulness of
LES from a research methodology to a design tool and increasing its univer-
sality beyond fully developed turbulence to the heterogeneous mix of lami-
nar, transitional, and fully developed turbulence typically found in practical
flows.

The great challenge of simulating turbulence is that equations describ-
ing averages of flow quantities cannot be obtained directly from the physics
of fluids. On the other hand, the equations for the pointwise flow quan-
tities are well known, but intractable to solution and sensitive to small
perturbations and uncertainties in problem data. These pointwise equa-
tions for velocity and pressure in an incompressible, viscous, Newtonian
fluid are the Navier–Stokes equations (abbreviated NSE) for the velocity
u(x, t) = uj(x1, x2, x3, t), (j = 1, 2, 3) and pressure p(x, t) = p(x1, x2, x3, t)
given by

ut + u · ∇u − ν∆u + ∇p = f , in Ω × (0, T ), (1.1)
∇ · u = 0, in Ω × (0, T ), (1.2)

where ν = µ/ρ is the kinematic viscosity, f is the body force, and Ω ⊂ �d

(d = 2 or 3) is the bounded flow domain with a sufficiently regular boundary
∂Ω. The NSE are supplemented by the initial condition and the usual pressure
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normalization condition

u(x, 0) = u0(x), for x ∈ Ω and
∫

Ω

p(x, t) dx = 0, (1.3)

and appropriate boundary conditions, such as the no-slip condition,

u = 0 on ∂Ω.

When it is useful to uncouple the difficulties arising from the equations of mo-
tion from those connected with interaction of the fluid with the boundary, it is
usual to study (1.1), (1.2), and (1.3) on Ω = (0, 2π)d, under periodic bound-
ary conditions (instead of the no-slip condition) with zero mean imposed upon
the velocity and all data1⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(x + 2πej, t) = u(x, t), and
∫

Ω

u(x, t) dx = 0,

where
∫

Ω

u0(x) dx = 0, and
∫

Ω

f(x, t) dx = 0, for 0 ≤ t ≤ T.

We observe that, due to the divergence-free constraint, the nonlinear term
u · ∇u can be written in two equivalent ways:

u · ∇u =
3∑

j=1

uj
∂ui

∂xj
or ∇ · (uu) =

3∑
j=1

∂

∂xj
(uiuj).

The NSE follow directly from conservation of mass, conservation of lin-
ear momentum and a linear stress–strain relation, see Sect. 2.2 for fur-
ther details. One fundamental property of the Navier–Stokes equations that
is a direct connection between the physics of fluid motion and its math-
ematical description is the energy inequality, proved by J. Leray in his
1934 paper [213]. Here ‖ · ‖ denotes the usual L2(Ω)-norm of a vector
field ‖u‖ = (

∫
Ω
|u(x)|2 dx)

1
2 and ( · , · ) the associated L2(Ω) inner prod-

uct.

Theorem 1.1. For each divergence-free initial datum u0 (under either peri-
odic or no-slip boundary conditions) there exist weak2 solutions in the sense of
Leray and Hopf. All of them satisfy, for t > 0, the following energy inequality

1
2
‖u(t)‖2 +

∫ t

0

ν‖∇u(τ)‖2 dτ ≤ 1
2
‖u0‖2 +

∫ t

0

(f(τ),u(τ)) dτ.

If u is a strong solution then the energy inequality holds with inequality re-
placed by equality.
1 Here ej j = 1, . . . , d are the canonical basis functions in �d.
2 We will present later the exact definitions of strong and weak solutions referred

to in this theorem.
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The above energy inequality is the direct link between the physics of fluid
motion and the abstract theory of the NSE. In fact, each term has a direct
physical interpretation (see also Sect. 2.4.3):

kinetic energy k(t) =
1
2
‖u(t)‖2,

energy dissipation rate ε(t) =
ν

|Ω| ‖∇u(t)‖2,

power input P (t) = (f(t),u(t)),

and, as we will see extensively in Part II and Part III, an energy in-
equality will be the core for most of the analytical existence theorems
for LES models. In particular, in Chap. 2 we will review the main re-
sults on weak and strong solutions for the NSE to give the reader at
least the flavor of the mathematical difficulties involved in the study of
the NSE. At the same time, we try to give a reasonable number of de-
tails, in such a way that the reader can understand and practice some
of the basic tools in the analysis of nonlinear partial differential equa-
tions.

The NSE, supplemented by appropriate boundary-initial-conditions quite
likely include all information about turbulence. The wide separation between
the largest and smallest scales of turbulence (Chap. 2 and onward) creates
problems however. Extracting that information reliably (meaning, performing
a direct numerical simulation (DNS) in which the mesh is chosen fine enough
to resolve the smallest persistent eddy) is not feasible for many important
flows.

The key control parameter in the Navier–Stokes equations is the (non-
dimensional) Reynolds [262] number Re defined by

Re :=
UL

ν
, U = characteristic velocity, L = characteristic length,

ν = kinematic viscosity.
(1.4)

When Re is large, the flow typically increases in complexity and in the range of
solution scales that persist. For large enough Re, the flow becomes turbulent.
Since turbulent flows are the typical case in nature, predicting turbulent flows
is an important challenge in scientific and engineering applications. Indeed,
design decisions that impact on our lives are made daily based upon doubtful
simulations of turbulent flow. Obviously, design and control must be preceded
by description and understanding, and reliable prediction requires a synthesis
of both theory and experiment as foreseen by Sir Francis Bacon in 1620 in
Novum Organum:

Nature, to be commanded, must be obeyed.

Kolmogorov’s 1941 theory of homogeneous, isotropic turbulence (which is de-
scribed in Chap. 2 in more detail) predicts that small scales exist down to
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O(Re−3/4), where Re > 0 is the Reynolds number, see (1.4). Thus, in order
to capture them on a mesh, we need a mesh size h ≈ Re−3/4, and conse-
quently (in 3D) N = Re9/4 mesh points. To give the flavor of the overall
computational cost, here are some representative Reynolds numbers

• model airplane (characteristic length 1 m, characteristic velocity 1 m/s)
Re ≈ 7 · 104

requiring N ≈ 8 · 1010 mesh points per time-step for a DNS
• cars (characteristic velocity 3 m/s)

Re ≈ 6 · 105

requiring N ≈ 1013 mesh points per time-step for a DNS
• airplanes (characteristic velocity 30 m/s)

Re ≈ 2 · 107

requiring N ≈ 2 · 1016 mesh points per time-step for a DNS
• atmospheric flows

Re ≈ 1020

requiring N ≈ 1045 mesh points per time-step for a DNS

Even though DNS is obviously unsuitable for many numerical simulations
of turbulent flows, it can be useful to validate turbulence models. Moreover,
even if DNS were feasible for turbulent flows, a major hurdle would be defining
precise initial and boundary conditions. At high Reynolds numbers the flow
is unstable. Thus, even small boundary perturbations may excite the already
existing small scales. This results in unphysical noise being introduced in
the system, and in the random character of the flow. Indeed, as observed in
Aldama [7], the uncontrollable nature of the boundary conditions (in terms
of wall roughness, wall vibration, differential heating or cooling, etc.) forces
the analyst to characterize them as “random forcings” which, consequently,
produce random responses. In such settings, calculating average values of flow
quantities makes more sense than point values. See Sect. 2.6 for further details.

Further, that information, if extractable comprises a data set so large that
sifting through it to calculate the quantities needed for flow simulation is
a computational challenge by itself. Often these quantities are flow statis-
tics or averages. Thus, the clear practical solution to both aspects which has
evolved is to try to calculate directly the sought averages. Further, there is
considerable evidence, which comes from analyzing data from observations of
turbulent flows in nature, that the large scales in turbulence are not chaotic
but deterministic, while the sensitivity, randomness, and chaotic dynamics is
restricted to the small scales. Thus, it is usual to seek not to predict the point-
wise (molecular) couple velocity–pressure (u, p), but rather suitable averages
of it, (u, p).

1.1 Characteristics of Turbulence

In 1949, John von Neumann wrote in one of his reports, privately circulated
for many years (see [117]):
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These considerations justify the view that a considerable mathematical ef-

fort toward a detailed understanding of the mechanism of turbulence is

called for. The entire experience with the subject indicates that the purely

analytical approach is beset with difficulties, which at this moment are still

prohibitive. The reason for this is probably as was indicated above: That

our intuitive relationship to the subject is still too loose – not having suc-

ceeded at anything like deep mathematical penetration in any part of the

subject, we are still quite disoriented as to the relevant factors, and as to

the proper analytical machinery to be used.
Under these conditions there might be some hope to ‘break the dead-

lock’ by extensive, well-planned, computational efforts. It must be admit-

ted that the problems in question are too vast to be solved by a direct

computational attack, that is, by an outright calculation of a representa-

tive family of special cases. There are, however, strong indications that

one could name certain strategic points in this complex, where relevant

information must be obtained by direct calculations. If this is properly

done, and then the operation is repeated on the basis of broader infor-

mation then becoming available, etc., there is a reasonable chance of ef-

fecting real penetrations in this complex of problems and gradually de-

veloping a useful, intuitive relationship to it. This should, in the end,

make an attack with analytical methods, that is truly more mathemati-

cal, possible.

Since we are still far from a mathematically rigorous understanding of turbu-
lence, the physical markers of turbulence in experiments are important.

However, this path is by no means easy. This is apparent when we try to
define turbulence. It is usual to describe turbulence by listing its characteristic
features. (For a detailed presentation, the reader is referred to Lesieur [214],
Frisch [117], Pope [258], and Hinze [151].)

• Turbulent flows are irregular. Because of irregularity, the deterministic
approach to turbulence becomes impractical, in that it appears intractable
to describe the turbulent motion in all details as a function of time and
space coordinates. However, it is believed possible to indicate average (with
respect to space and time) values of velocity and pressure.

• Turbulent flows are diffusive. This causes rapid mixing and increased rates
of momentum, heat and mass transfer. Turbulent flows are able to mix
transported quantities much more rapidly than if only molecular diffusion
processes were involved. For example, if a passive scalar is being trans-
ported by the flow, a certain amount of mixing will occur due to molecu-
lar diffusion. In a turbulent flow, the same sort of mixing is observed, but
in a much greater amount than predicted by molecular diffusion. From
the practical viewpoint, diffusivity is very important: the engineer, for in-
stance, is concerned with the knowledge of turbulent heat diffusion coeffi-
cients, or the turbulent drag (depending on turbulent momentum diffusion
in the flow).
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• Turbulent flows are rotational. For a large class of flows, turbulence arises
due to the presence of boundaries or obstacles, which create vorticity inside
a flow which was initially irrotational. Turbulence is thus associated with
vorticity, and it is impossible to imagine a turbulent irrotational flow.

• Turbulent flows occur at high Reynolds numbers. Turbulence often arises as
a cascade of instabilities of laminar flows as the Reynolds number increases.

• Turbulent flows are dissipative. Viscosity effects will result in the conver-
sion of kinetic energy of the flow into heat. If there is no external source of
energy to make up for this kinetic energy loss, the turbulent motion will
decay (see [117]).

• Turbulence is a continuum phenomenon. As noticed in [151], even the
smallest scales occurring in a turbulent flow are ordinarily far larger than
any molecular length scale.

• Turbulence is a feature of fluid flows, and not of fluids. If the Reynolds
number is high enough, most of the dynamics of turbulence is the same
in all fluids (liquids or gases). The main characteristics of turbulent flows
are not controlled by the molecular properties of the particular fluid.

1.2 What are Useful Averages?

We have seen that it is usual to seek to predict suitable averages of velocity
and pressure. Several different, useful averages play important roles in our pre-
sentation. Many more averaging operations are used in practice. At this point,
there is no clear consensus on which averaging operation is most promising
and, naturally, there’s a lot of experimentation with different possibilities.

Conventional turbulence models approximate time averages of flow quan-
tities, such as

〈u〉(x) := lim
T→∞

1
T

∫ T

0

u(x, t) dt, 〈p〉(x) := lim
T→∞

1
T

∫ T

0

p(x, t) dt.

Due to the pioneering work [262] of Osborne Reynolds, these are also known
as Reynolds averages. There are also flows for which the central features of
turbulence are inherently dynamic. For these flows time averaging will com-
pletely erase the features one seeks to predict, which are retained by using
instead a local, spatial average. LES seeks to approximate these local, spatial
averages of the flow variables.

Mesh cell averaging is natural for finite difference calculations on struc-
tured meshes. Thus, the simplest example is averaging over a mesh cell (for
example a box about x = (x1, x2, x3) with equal sides of length δ):

u(x, t) =
1
δ3

x1+
δ
2∫

x1− δ
2

x2+
δ
2∫

x2− δ
2

x3+
δ
2∫

x3− δ
2

u(y1, y2, y3, t) dy1dy2dy3 (1.5)
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However natural3, this definition has many disadvantages. The resulting model
cannot be rotation invariant. The model’s solution will be very sensitive to the
mesh orientation, so convergence will be hard to assess. The model also will
not be smoothing and hence the property that the averages be deterministic in
nature might fail. A better approach is to define the averages by convolution
with a smooth function that is rotationally symmetric. Thus, let g(x) be
a filter kernel that is smooth, rotationally symmetric, and satisfying

0 ≤ g(x) ≤ 1, g(0) = 1,

∫
�d

g(x) dx = 1. (1.6)

Pick the length scale δ > 0 of the eddies that are sought and define:

gδ(x) :=
1
δd

g
(x

δ

)
.

Then, the LES average velocity u and (turbulent) fluctuation u′ are defined
by

u(x, t) = (gδ ∗ u)(x, t) :=
∫
�d

gδ(x − x′)u(x′, t) dx′, and u′ = u− u. (1.7)

It is interesting to note that, while this decomposition into means and fluc-
tuations was developed by Reynolds, it was advanced much earlier by, for
example, da Vinci in 1510 in his description of vortices trailing a blunt body
(as translated by Piomelli, http://www.glue.umd.edu/∼ugo)

“Observe the motion of the water surface, which resembles that of hair,

that has two motions: One due to the weight of the shaft the other to the

shape of the curls; thus water has two eddying motions, one part of which is

due to the principal current, the other to the random and reverse motion.”

L. da Vinci, Codice Atlantico, 1510.

This definition overcomes many of the disadvantages of averaging over a mesh
cell. Further, u′ → 0 as δ → 0, so the closure problem is essentially that of
estimating the effects of small quantities on large quantities, and thus hopeful.

To make this precise it is necessary to introduce some notation (e.g.
Adams [4], Dautray and Lions [84], or Galdi [121], and for further details
see also Chap. 2).

Definition 1.2. The L2(Ω) norm, denoted ‖ . ‖, is

‖u‖ :=
[∫

Ω

|u|2 dx
]1/2

.

3 The original definition of O. Reynolds used exactly (1.5), which relies on space
average within a small volume (this is (4) on p. 134 of the original paper [262]).
He also considered the time average over a sliding time window (p. 135 of the
original paper). Therefore, the original Reynolds operator is the LES box filter
or its temporal counterpart!
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The Hk-norm, denoted ‖ · ‖Hk, is

‖u‖Hk :=
[ ∑
|α|≤k

∥∥∥∥ ∂|α|

∂xα1
1 . . . ∂xαd

d

u
∥∥∥∥2]1/2

and Hk(Ω) denotes the closure of the infinitely smooth functions in ‖ · ‖k.

For a constant averaging radius δ a lot is known about filtering, some of which
is summarized next (see also Sect. 2.4.5). One common filter we will treat is
the Gaussian. In three dimensions it is

gδ(x) =
(γ

π

) 3
2 1

δ3
e
−γ

|x|2
δ2 ,

and typically γ = 6. Here we summarize the main properties of this filter and
we will use them in the sequel.

Theorem 1.3. Let δ be constant (not varying with position x). Then,

(a) If u ∈ L2(Ω) and u is extended by zero off Ω to compute u, then u → u
as δ → 0, i.e. ‖u− u‖ → 0.

(b) If u ∈ L2(Ω) and ∇u ∈ L2(Ω) with u = 0 on ∂Ω and extended by zero
off Ω to compute u, then

‖∇(u − u)‖ → 0 as δ → 0.

(c) If the velocity field u has bounded kinetic energy then so does u:

1
2

∫
Ω

|u|2 dx ≤ C

2

∫
Ω

|u|2 dx,

where the constant C is independent of δ.
(d) In the absence of boundaries (e.g. in the whole space or under periodic

boundary conditions), filtering and differentiation commute:

∂|α|

∂xα1
1 . . . ∂xαd

d

u =
(

∂|α|

∂xα1
1 . . . ∂xαd

d

u
)

∀α ∈ �d.

(e) In the absence of boundaries (under periodic boundary conditions), for
smooth u, u = u + O(δ2). Specifically, we have

‖u− u‖ ≤ Cδ2‖u‖H2 , for u ∈ H2(Ω). (1.8)

Remarks on the Proof: We sketch the proof since it can be done by using
the well-known technique of the Fourier transform. By definition, the Fourier
transform of φ is

φ̂(k, t) :=
∫
�d

φ(x, t) e−ik·x dx,
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where k represents the wavenumber vector. As a notation convention, from
now on we will denote the Fourier transform of φ by either φ̂, or F(φ). Parts
(a)–(d) are standard results for averaging by convolution. Part (c) is known
as Young’s inequality. Part (e) can be proved several different ways (see the
books [117, 152, 158]). For example, by using basic properties of Fourier trans-
forms:

‖u− u‖2 = ‖û− u‖2 = ‖(1 − ĝδ)(k)û(k)‖2

=
( ∫
|k|≥π/δ

+
∫

|k|≤π/δ

)
|1 − ĝδ(k)|2 |û(k)|2dk, (1.9)

we observe (this is one of the main tools when using Gaussian filters) that the
Fourier transform of the Gaussian is again a Gaussian:

ĝδ(k) = e
−

δ2

4γ
(k2

1 + k2
2 + k2

3)
.

In the sequel C will denote possibly different constants, not depending on δ
and u. On 0 ≤ |k| ≤ π/δ, Taylor series expansion shows that

|1 − ĝδ(k)|2 ≤ Cδ4|k|4, for 0 ≤ |k| ≤ π

δ
, (1.10)

while on |k| ≥ π/δ it holds that

|1 − ĝδ(k)|2 ≤ 22 ≤ C(1 + |k|)2)−2(1 + |k|2)2 ≤ C(1 + π2δ−2)−2 (1 + |k|2)2.
Thus,

|1 − ĝδ(k)|2 ≤ C δ4(1 + |k|2)2, for |k| ≥ π

δ
. (1.11)

Combining (1.10) and (1.11) in (1.9) gives

‖u− u‖2 ≤ C δ4

∫
(1 + |k|2)2 |û(k)|2 dk.

We note that, again by Plancherel’s theorem,∫
(1 + |k|2)2|û(k)|2dk ≤ C‖u‖2

H2

so that (1.8) follows, since the latter is an equivalent definition of the space
H2, see [84].

It is interesting to note that the fact the averaging over space can also
slow down time variability of a flow was described by W. Wordsworth:

“Yon foaming flood seems motionless as ice;

Its dizzy turbulence eludes the eye,

Frozen by distance.”

W. Wordsworth, 1770-1850, from Address to Kilchurn Castle.
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Naturally, definition (1.7) for u only makes sense if u(x, t) can be extended off
the flow domain Ω. For example, for Ω a box with periodic boundary condi-
tions, a periodic extension of u suffices. If Ω is a box again and u vanishes on
the boundary then u can be extended oddly off Ω. For more general domains,
finding such an agreeable extension of u off Ω (which, through the equations
of motion, determines the extension of the body force f needed to compute f)
is not possible, see also Chap. 9.

Commonly used Spatial Filters

Many filter kernels are used. A good survey of the spatial filters commonly
used in LES is given in Aldama [7], Coletti [67], and in the recent book by
Sagaut [267]. Here we recall the most widely used.

Let φ(x, t) be an instantaneous flow variable (velocity or pressure) in the
NSE, and g denote an averaging kernel (1.6), with g(x) → 0 rapidly as
|x| → ∞. The corresponding filtered flow variable is defined by convolution:

φ(x, t) :=
∫
�d

g(x− x′) φ(x′, t) dx′. (1.12)

The effect of the filtering operation becomes clear by taking the Fourier trans-
form of expression (1.12). By the convolution theorem (roughly speaking the
Fourier transform converts convolution into product), we get

φ̂(k, t) = ĝ(k) φ̂(k, t).

Thus, if ĝ = 0, for | ki |> kc, 1 ≤ i ≤ d, where kc is a “cut-off” wavenumber,
all the high wavenumber components of φ are filtered out by convolving φ
with g. In 1958 Holloway [154] denoted a filter with these characteristics an
“Ideal Low Pass Filter.” However, if ĝ falls off rapidly (exponentially, say), an
effective cut-off wavenumber can also be defined.

In addition to the ideal low pass filter, most commonly box filters and
Gaussian filters have been used [267, 258]. The box filter (also known as “mov-
ing average” or “top hat filter”) is commonly used in practice for experimental
or field data.

• Ideal Low Pass Filter

g(x) :=
d∏

j=1

sin 2πxj

δ

πxj
(1.13)

ĝ(k) =
{

1 if | kj |≤ 2π
δ , ∀ 1 ≤ j ≤ d,

0 otherwise. (1.14)
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• Box Filter

g(x) :=

{ 1
δ3

if | xj |≤ δ
2 , ∀ 1 ≤ j ≤ d,

0 otherwise.
(1.15)

ĝ(k) =
d∏

j=1

sin δkj

2
δkj

2

(1.16)

• Gaussian Filter

g(x) :=
(γ

π

)3/2 1
δ3

e
−γ | x |2

δ2 (1.17)

ĝ(k) = e
−δ2 | k |2

4γ (1.18)

In formulas (1.13)–(1.18), δ represents the radius of the spatial filter g, and
γ is a shape parameter often chosen to have the value γ = 6. For the ideal
low pass filter a clear cut-off wavenumber, equal to 2π/δ can be defined. In
contrast, the Fourier transform of the box filter is a damped sinusoid and
thus, spurious “amplitude reversals” are produced by its use in the Fourier
space. Finally, the Fourier transform of the Gaussian filter is also a Gaussian
and decays very rapidly. In fact, for all practical purposes, it is essentially
contained in the range

[− 2π
δ , 2π

δ

]
.

Differential Filters. An alternative well-known class of filters is that of
differential filters, that were proposed in two pioneering papers by Ger-
mano [126, 127], see also Chap. 9. By using a differential filter, he obtained
an LES model similar to the Rational LES model we will present in Chap. 7.
Although differential filters are very appealing, they have been less used in
practice than the three filters defined above. On the other hand, there is
a strong argument that differential filters are a correct extension of filtering
by convolution to bounded domains. Thus, we believe that they will become
more central to LES as it develops.

We also observe that the Gaussian is the heat kernel. Thus, a natural
extension of filtering from �

3 to bounded domains is via a differential filter.
In this case the average u is the solution of

−δ2�u + u + ∇λ = u(x, t), and ∇ · u = 0, in Ω,

subject to appropriate conditions on the boundary. For example, if Ω is
a bounded domain with the no-slip condition u = 0 on the boundary, we
impose u = 0 on ∂Ω as the boundary condition for the above.
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Any reasonable, local, spatial filter has two key properties:

(i) u → u in L2(Ω) as δ → 0;
(ii) ‖u‖ ≤ C‖u‖, uniformly in δ.

Remark 1.4. In the above presentation, we have assumed that δ, the filter
radius, is constant. Often the filter radius is allowed to vary in space: δ := δ(x).
In Part IV, we will discuss in more detail the reasons for this choice and the
possible consequences.

1.3 Conventional Turbulence Models

Time averaging, used in conventional turbulence models CTM (such as the k-ε
model) was introduced by O. Reynolds [262]. It commutes with differentiation;
thus, averaging the NSE gives an equilibrium problem for this flow average
〈u〉(x).

− 1
Re

�〈u〉 + ∇ · 〈u u〉 + ∇〈p〉 = 〈f〉, and ∇ · 〈u〉 = 0, in Ω. (1.19)

This problem is affected by the closure problem. The closure problem arises
in (1.19), since 〈uu〉 �= 〈u〉〈u〉. Thus, some closure model is needed. Since
the closure problem occurs in a very similar way in LES, it is useful to
look at it briefly here, for time averaging. The fluctuations about the av-
erage 〈u〉, u′(x, t) are defined by u′(x, t) := u(x, t) − 〈u〉(x). Time averag-
ing has many convenient mathematical properties. For example, if u = 0
on the boundary and if the boundary does not itself move, then 〈u〉 = 0
on the same boundary. Thus, for time averaging, correct boundary condi-
tions are known. Any other boundary condition imposed is for economy or
convenience, not necessity. Other important properties include: 〈u′〉 = 0,
〈〈u〉〉 = 〈u〉, and 〈〈u〉v〉 = 〈u〉 〈v〉, see Mohammadi and Pironneau [239].
Since u = 〈u〉 + u′ we can expand the nonlinear term using these pro-
perties:

〈u u〉 = 〈〈u〉〈u〉〉 + 〈〈u〉u′ + u′〈u〉〉 + 〈u′u′〉 = 〈u〉〈u〉 + 〈u′u′〉.

Thus, the time–averaged Navier–Stokes equations are

− 1
Re

�〈u〉 + ∇ · 〈u〉〈u〉 + ∇ · 〈u′u′〉 + ∇〈p〉 = 〈f〉, and ∇ · 〈u〉 = 0, in Ω.

If we think of the average 〈u〉 as being the observable and the fluctuation u′

as being the unknowable, the closure problem can be restated pessimistically
as follows:

“model the mean action of the unknowable upon the observable,”
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that is, replace 〈u′u′〉 by terms only involving 〈u〉. If the closure prob-
lem for CTM can be solved, then it gives economical prediction of flow
statistics, meaning time averages. Closure is one of the main challenges
of conventional turbulence modeling: find models which give (incremen-
tal) more reliable predictions of flow statistics for various flow configu-
rations.

As an example of a common closure, let’s briefly consider eddy viscosity
models, which we will consider in more detail in Chaps. 3 and 4. Turbulent
flow has long been observed to have stronger mixing and energy dissipation
properties than laminar flows (see, for example, the experimental laws of fully
developed turbulence discussed in Chap. 5 of Frisch [117]). This and other
considerations led Boussinesq [43] to postulate that

“turbulent fluctuations are dissipative in the mean,”

now known as the Boussinesq assumption or eddy viscosity hypothesis,
Chap. 3. Mathematically, this corresponds to the model

∇ · 〈u′ u′〉 ≈ −∇ · (νT∇s〈u〉) + terms incorporated into the pressure.

Here ∇s denotes the symmetric part of the gradient tensor,

(∇sv)ij :=
1
2
(vi,xj + vj,xi)

and νT is the unknown eddy viscosity coefficient. Dimensional analysis sug-
gests that the form of the turbulent viscosity coefficient νT should be given
by the Prandtl–Kolmogorov relation:

νT = Constant l 〈
√

k′〉,
where

(1.20)l = l(x, t) : local length scale of turbulent fluctuations,

k′ =
1
2
|u′(x, t)|2 : kinetic energy of turbulent fluctuations.

Assuming the eddy viscosity hypothesis, which is itself at best an analogy
rather than a systematic approximation, the closure problem of CTM revolves
around the almost equally hard problem of predicting k′ and l.

The basic difficulty with conventional turbulence modeling is that 〈u〉 and
u′ are, typically, both O(1) and thus so are k′ and (arguably) l. Thus, very
accurate models are needed to produce accurate statistics. This often changes
conventional turbulence modeling into a problem of model calibration, which
means data fitting many undetermined model parameters to specific flow set-
tings. Challenges for conventional turbulence models include how to produce
reliable data for their calibration and how to simulate essentially dynamic
flow behavior (known as URANS modeling). Contributions to these questions
and others also are being made by LES.
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1.4 Large Eddy Simulation

LES is connected to a natural computational idea: when a computational
mesh is so coarse that the problem data and solution sought fluctuates sig-
nificantly inside each mesh cell, it is only reasonable to replace the problem
data by mesh cell averages of that data and for the approximate solution to
represent a mesh cell average of the true solution. This observation was made
by L. F. Richardson in his 1922 book [263]! Mathematically, if δ is the mesh
cell width, then we should seek to approximate not the pointwise fluid veloc-
ity u(x, t) but rather some mesh cell average u(x, t), the simplest of which is
given by (1.5).

These cell averages are just convolution of the velocity u with the filter
function δ−3g(x/δ). For example, for the simplest cell average, (1.5), g(x) is
given by

g(x) =

{
1, if all |xj | ≤ 1

2

0, otherwise.

As noted above, many other filters, g(x), are useful and important as well,
such as Gaussian and differential filters.

Then this is the idea of LES in a nutshell: pick a useful filter g(x) and
define u(x, t) := (gδ ∗ u)(x, t) by (1.7). Derive appropriate equations for u
by filtering the NSE. Solve the closure problem; impose accurate boundary
conditions for u. Then discretize the resulting continuum model and solve it!

Generally, such an averaging suppresses any fluctuations in u below O(δ)
and preserves those on scales larger than O(δ). Averaging the NSE with this
gδ(x) reveals that under periodic boundary conditions (after some calculations
and simplifications) u satisfies u(x, 0) = u0(x) and

ut − ν�u + u · ∇u + ∇p + ∇ · (u u − u u) = f , in Ω × (0, T ) (1.21)
∇ · u = 0, in Ω × (0, T ). (1.22)

This system is often called the SpaceFilteredNavier–StokesEquation (SFNSE).
Again the closure problem arises since uu �= uu. With an appropriate closure
model for uu − u u, apparently (1.21) and (1.22) can be supplemented by
boundary conditions then discretized and solved to give an approximation
of u.

Complex models are thus coupled with complex discretization and solution
algorithms which contain implicit and grid-dependent stabilization. These can
swamp the subtle effects the model is attempting to simulate. If the qualitative
predictions of the simulation are grid dependent, the question arises: does the
continuum LES model have a solution which would then be mesh independent
or is the code trying to hit a target that moves as the mesh width h → 0?
Thus, the fundamental mathematical questions of existence, uniqueness and
stability of a continuum LES model have direct bearing on interpreting re-
sults of simulations. Unfortunately, these mathematical problems and others
introduced by boundaries are also nontrivial.
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1.5 Problems with Boundaries

This derivation of the SFNSE takes advantage of the fact that convolution
and differentiation commute. In fact,

in the absence of boundaries g ∗
( ∂u

∂xi

)
=

∂

∂xi
(g ∗ u), for i = 1, . . . , d

i.e. for Ω = �3 or for Ω a box with periodic boundary conditions imposed on
its boundary. The “first difficult issue” with boundaries is then associated with
the “very first step” in the derivation of the SFNSE and in phrases like away
from walls, in the absence of boundaries, and we first focus on the interior
equations. Briefly, averaging/convolution and differentiation do not commute
when boundaries are present and this introduces an extra term, the boundary
commutation error term Aδ(u, p), into the correctly derived SFNSE. Let the
stress tensor be denoted by σ(u, p) := −p �+2ν∇su. In Chap. 9 this boundary
commutator error term is calculated as

Aδ(u, p) =
∫

∂Ω

gδ(x − s)σ(u, p)(s) · n(s) dS(s),

where n is the outward unit normal vector of ∂Ω.
A careful analysis of the equations in Chap. 9, which follows [101], shows

that ‖Aδ(u, p)‖ → 0, as δ → 0, if and only if σ ·n ≡ 0, on ∂Ω. The expression
σ(u, p)·n is the force that the unknown, underlying turbulent flow (u, p) exerts
on the boundary. Thus, the term vanishes only if all variables can be extended
across the boundary so that there’s no net pointwise force on the boundary.
One inescapable conclusion of this result is that within the usual constant
averaging radius filtering approach to LES, a model of the commutation error
term must be included for turbulent flow in which boundaries are important!
So far, this term seems intractable, although encouraging attempts were made
in [83, 39]. Lack of good models for Aδ(u, p) might be one contributing reason
LES experiences difficulties with near wall turbulence.

Developing effective computational models of the boundary commutation
error term Aδ(u, p) is thus an important open problem in LES. Another,
complementary research challenge is to develop more – fully alternative – ap-
proaches, such as using a variable averaging radius δ = δ(x) → 0 as x → ∂ Ω,
as developed by Vasilyev, Lund, and Moin [304], and differential filters, Ger-
mano [127, 126]. In both these cases, commutation error terms appear that
are more uniformly distributed through the domain instead of piling up near
∂Ω.

Very often, LES models have difficulty predicting turbulence generated by
interactions of a (mostly laminar) flow with a (usually complex) boundary.
Thus, the issue of finding boundary conditions for flow averages that are both
accurate and well posed is an important one. With constant averaging radius,
the problem of finding accurate boundary conditions for u is also unavoidable.
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In LES, such conditions are known as near wall models . The difficulty in near
wall modeling is that u on the boundary depends nonlocally on u near the
boundary. Thus, simply imposing u = 0 on the boundary has two negative
consequences:

(i) it degrades the overall accuracy of the model,
(ii) it introduces artificial boundary layers near the boundary that are smaller

than O(δ).

Many ideas about using wall laws in conventional turbulence models for ef-
ficiency have been imported into near wall modeling in LES. The approach
we study in Chap. 10 is to decompose u = 0 on ∂Ω into its two component
parts:

no-penetration: u · n = 0 and no-slip: u · τ j = 0, on the boundary,
where τ j denotes unit tangent vectors.
Motivated by the work of Maxwell in 1879 [234] we consider near wall models
for u retaining no-penetration but replacing no-slip by a slip-with-friction
condition:

No penetration of large eddies: u · n = 0,
Slip-with-friction along the boundary: β u · τ j + n · σ(u, p) · τ j = 0.

For β ≥ 0, these boundary conditions lead to well-posed problems. The sim-
plest example of such a β was derived by J.C. Maxwell [234], using the kinetic
theory of gases. If we identify the LES microlength scale with δ (for a gas it
is a mean free path), then Maxwell’s analysis suggests

β ≈ LRe−1

δ
. (1.23)

In Chap. 10, we show how the friction parameter β = β(u, δ, Re) can be
constructed using boundary layer theory. These constructions give near wall
models with the correct double asymptotics in Re and δ, see Sect. 10.4. How-
ever, boundary layer theory is less accurate for complex geometries, and it
does not apply to turbulent flows with time-dependent boundary conditions,
such as those in a control setting. We will present an alternative set of bound-
ary conditions for these types of flows in Chap. 10.

Because of the twin difficulties of commutator error and near wall mod-
eling, we take the reductionist approach: the closure problem will be treated
for periodic boundary conditions in Parts I, II, and III. This uncouples the
modeling and model validation problems from the problems of boundaries.
Then, the question of boundaries will be separately considered in Part IV.

1.6 The Interior Closure Problem in LES

In contrast to conventional turbulence models, LES retains all the dynamics of
the large scales. Like in conventional turbulence models, the closure problem
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arises because the average of the product is not the product of the averages.
As before, define fluctuations u′ = u−u so we can write u = u+u′. In spatial
filtering u′ �= 0 and, in general, u �= u so that the nonlinear term retains all
four addends

uu = uu + uu′ + u′u + u′u′,
or equivalently,

uu− uu = (uu − uu) + uu′ + u′u + u′u′.

Compared to conventional turbulence models, the closure problem in LES is
more difficult in that more interactions must be modeled than in the former.
The critical reason for optimism in LES closure modeling is that, generally,
δ is small and getting smaller as computers improve4 and feasible meshes
get finer. Thus, in many flows, the portion of the flow that must be modeled,
u′ is small relative to the portion that is calculated, u. Generally, a crude
model with a large percentage error of a small variable is, in absolute terms,
more accurate than a complex and highly tuned model of a large variable.
As a result, models in LES tend to be both simple and accurate and overall
computational cost tends not to be much greater than doing an (unreliable,
under-refined) solution of the NSE on the same mesh!

This was the LES idea of deriving equations for space averaged variables
mentioned by Richardson [263] in 1922! It can also be argued that the first use
of this idea for mathematical understanding of the Navier–Stokes equations
was by J. Leray [213] in the 1930s. Indeed, if we make the simple closure
substitution

uu ≈ u u

then the SFNSE become a closed system for a velocity and pressure, (w, q),
which (hopefully) approximate (u, p), given by

wt + w · ∇w − ν∆w + ∇q = f in Ω × (0, T ),
∇ ·w = 0, in Ω × (0, T ).

Leray developed (for the Cauchy problem) the mathematical properties of
the system which are quite favorable, see Chaps. 2 and 8. By considering the
behavior of w as δ → 0, he recovered a solution of the NSE. Missing from his
treatment are two central issues in LES:

(i) What is the accuracy of the approximation w ≈ u?
(ii) How accurately do statistics calculated from w represent the same statis-

tics from u or u?

For recent work revisiting Leray’s model see Cheskidov et al. [59].

4 For geophysical flows, however, computers are not yet powerful enough for u′ to
be small in absolute terms and the situation might not be as optimistic.
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Remark 1.5 (The NS-α Model). Among the many interesting related topics
not covered herein there is the NS-α model. The NS-α model is an interesting
recent model derived in Camassa and Holm [53] by averaging a Lagrangian
rather than Eulerian formulation of the Euler equations. It is an appealing
model because it is supported by rigorous mathematical analysis, [53], Foiaş,
Holm, and Titi [110, 111], and Marsden and Shkoller [232]. Interestingly, it
has recently been shown by Guermond, Oden, and Prudhomme [145] that the
NS-α model also comes about as a correction which restores frame invariance
to the above Leray regularization of the NSE.

1.7 Eddy Viscosity Closure Models in LES

Here we briefly anticipate some facts regarding eddy viscosity models (devel-
oped fully in Part II). If the flow domain Ω is a box and boundary conditions
are periodic, the boundary commutation error vanishes (so we will drop it for
the moment). If all the remaining nonclosed terms are lumped together and
the eddy viscosity hypothesis is postulated then we can write

∇ · (uu − uu) � −∇ · (νT∇su) + terms incorporated into the pressure,

where, as in CTM, the form of νT is given by dimensional analysis to be
νT = Constant · l ·

√
k′. In LES the length scale associated with fluctuations is

known, l = δ. Further, because (generically) u �= u, an estimate of k′ can also
be given by extrapolation from resolved to unresolved scales. As u′ = u − u,
this implies u′ = u− u and we can derive the estimate

√
k′ =

√
1
2
|u − u|2 ≈

√
1
2
|u− u|2,

so that we obtain an easily calculable expression for the turbulent viscosity
coefficient:

νT := µ0δ|u− u|.
The value of the constant µ0 can be fitted to homogeneous isotopic turbulence
– Sect. 3.2 – and is around 0.17. Actually, any expression which is dimension-
ally consistent with this is possible. (This is also why the averaging can be
moved around to within the accuracy of the expression.) Thus, in LES there
are at least three natural turbulent viscosity coefficients:

νT := µ0δ|u − u|, (1.24)
νT := µ1δ

2|∇s(u − u)|, (1.25)
νT := µ2δ

3|∆(u − u)|. (1.26)

If a differential filter is used then −δ2�u + u = u, so that u − u = −δ2∆u.
This gives a fourth expression for the turbulent viscosity coefficient which
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is both directly connected to the idea of turbulent diffusion and which is
computationally agreeable:

νT := µ3δ
3|∆u|. (1.27)

The eddy viscosity LES model is then, in the periodic case,

wt + w · ∇w − ν∆w −∇ · (νT∇sw) + ∇q = f in Ω × (0, T ) (1.28)
∇ ·w = 0, in Ω × (0, T ), (1.29)

where the eddy viscosity coefficient νT is given either by (1.24), (1.25), (1.26),
or (1.27). All of them are computationally agreeable and, so far, seem to
produce good results by the standards expected of eddy viscosity models.
All however, give a system whose highest order term is a nonmonotone non-
linearity. With the first one (1.24), the nonlinearity also has an unbounded
coefficient and, as a consequence, the mathematical theory is not highly de-
veloped: all that is known is that a distributional solution exists, see Lay-
ton and Lewandowski [208] and Chap. 4. When νT is given by the second
relation (1.25), the model is close enough to the Smagorinsky model [277]
that the analysis of Ladyžhenskaya [195] and Du and Gunzburger [95] should
be extendable to the model. For (1.26), nothing is known. Interestingly, the
model (1.27) using the Gaussian Laplacian is very regular. Because this νT is
bounded, a first step [170] at a complete theory has been possible, Chap. 4.

A value for the constant µj , can be estimated by following a calculation
of Lilly [219] matching the models time averaged energy dissipation rate

〈εmodel〉 := lim sup
T→∞

1
T

∫ T

0

1
|Ω|

∫
Ω

[
ν + νT (w)

]|∇sw|2 dxdt

to that of the Navier–Stokes equations

〈ε〉 := lim sup
T→∞

1
T

∫ T

0

1
|Ω|

∫
Ω

ν|∇su|2 dxdt,

for the case of fully developed, homogeneous isotopic turbulence, Chap. 3. This
setting also gives an indication of the successful uses of eddy viscosity models:
they can give good prediction of time averaged statistics of fully developed
turbulence. They have more difficulties when integrated over long time inter-
vals, for problems with delicate energy balance, for transitional flows and for
predicting the dynamics of coherent eddies rather than their statistics. Often
eddy viscosity models, which are reliable for fully developed turbulence, fail
in transitional flows in which the turbulence must develop. One speculation as
to a source of some of these difficulties is that eddy viscosity should be limited
to modeling the actions of turbulent fluctuations on the mean flow, i.e., the
∇·(u′u′) term. This means that other, non-diffusive models are needed for the
first two terms in (1.6). Eddy viscosity models also fail to predict backscatter,
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the inverse transfer of energy from small eddies to the large ones. Backscat-
ter is an important feature of the subfilter-scale stress tensor τ = uu − uu,
and should be included in the LES model. However, the mathematical theory
associated with the backscatter is very challenging. A detailed description of
the phenomenon of backscatter and numerical illustrations are presented in
Chap. 12.

1.8 Closure Models Based on Systematic Approximation

Since in the case of LES the nonlinear term retains four terms,

uu = u u + uu′ + u′u + u′u′

one way to generate closure models is to find a method of either represent-
ing u in terms of u (for example u ≈ O(u)) or u′ in terms of u. Both are
equivalent formulations of the problem of deconvolution. Here we summarize
the systematic approximation, that we will present in Chap. 7, together with
recent existence results for the corresponding models.

With a deconvolution approximation,

u ≈ O(u)

the closure problem can be solved by uu ≈ O(u)O(u). Unfortunately, the
deconvolution problem is ill-posed. Since it is also a fundamental question of
image processing [236], many approximations and regularizations have been
developed for it. The necessary requirements for a deconvolution approxima-
tion to be useful in LES are:

(i) For smooth u, ‖u− O(u)‖ → 0, rapidly as δ → 0.
This is a mathematical statement of the requirement that models equa-
tions for the large scales be very close to the Navier–Stokes equations.

(ii) When used as a closure model uu ≈ O(u)O(u), the resulting continuum
model for the large scales w ≈ u,

wt + ∇ · O(w)O(w) − ν∆w + ∇q = f , and ∇ · w = 0,

is well posed.
(iii) Statistics computed from solving the above continuum LES model are

close to those obtained from the Navier–Stokes equations.
This can be considered to be a condition of accuracy on the small scales.

How can such deconvolution operators be generated? One method is by
asymptotics, either in physical or wavenumber space. For example, let gδ(x)
be the Gaussian filter and u = gδ ∗ u, so û(k) = ĝδ(k)û(k). Thus, û(k) =
ĝδ(k)−1û(k). If ĝδ(k)−1 is expanded in a Taylor series in δ we obtain
ĝδ(k)−1 = 1 − δ2

4γ |k|2 + O(δ4). Using this approximation and then inverting
the Fourier transform gives a deconvolution operator (see Chap. 7)
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u(x) ≈ F−1

[(
1 − δ2

4γ
|k|2

)
û(k)

]
,

where F−1 denotes the inverse Fourier transform.
Using this deconvolution approximation and collecting terms gives, after

simplification, the gradient model [212, 65]

uu− u u ≈ δ2

2γ
∇u∇uT , (1.30)

where

(∇u∇uT )i,j =
d∑

l=1

∂ui

∂xl

∂uj

∂xl
.

One way to test a model, Jimenez [172], is through a priori testing, see
Chaps. 7 and 12: perform a direct numerical simulation, obtain a velocity field
u, then compute the model’s consistency of approximation ‖uu−O(u)O(u)‖.
The gradient model performs well in these types of tests. However, stability
problems have been reported for it consistently and it has recently been shown
in [169] that the gradient model fails the above condition (ii): the kinetic en-
ergy of the model can blow up in finite time. Thus, improvements in the
asymptotic derivation of the model are considered.

The next critical improvement on the gradient model considered in Chap. 7
is to replace Taylor series asymptotics by Padé asymptotics. Sub-diagonal
Padé approximations are attractive because they preserve the attenuation of
high frequencies in the Gaussian filter. The (0,1)-Padé approximation to the
Gaussian is given by

ĝδ(k) :=
1

1 + δ2

4γ |k|2
+ O(δ4).

The same procedure as before (take the Fourier transform, replace ĝδ by its
(0,1)-Padé approximation, then take the inverse Fourier transform) gives the
deconvolution approximation

u :=
(
− δ2

4γ
∆ + �

)
u + O(δ4).

This deconvolution approximation leads to the Rational LES model [122],
Chap. 7,

wt + w · ∇w − ν∆w +
δ2

2γ
∇ ·

[(
− δ2

4γ
∆ + �

)−1

(∇w∇wT )

]
+ ∇q = f ,

∇ ·w = 0.

The Rational LES model has been shown to give good performances in nu-
merical tests, Chap. 7 and Part V, especially when combined with an eddy
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viscosity model of the neglected O(δ4),∇·u′u′ term. The Rational LES model
seems to be a step along a good path to develop accurate and stable LES mod-
els. At this point, it does not seem to be the final step and the mathematical
theory of the rational model is not complete, yet. The model’s derivation and
theoretical foundation are presented in Chap. 7. To capture u′u′, the term
neglected in the Rational LES model, a higher-order subfilter-scale model [33]
and its supporting mathematical analysis are also presented in Chap. 7.

The next approach to deconvolution we consider is by extrapolation from
resolved to unresolved scales. In other words, any model which can be thought
of as being a scale-similarity model. Chapter 8 begins with an introduction to
some common scale-similarity models and examples of extensions of them for
which mathematical development is possible. Next we consider a very promis-
ing family of such deconvolution models pioneered by Stolz and Adams [285],
and Stolz, Adams, and Kleiser [289, 290]. The first two examples of these
Stolz–Adams scale similarity/deconvolution models are:
(1) constant extrapolation from resolved to unresolved scales

u ≈ u + O(δ2), giving uu ≈ uu + O(δ2), and (1.31)

(2) linear extrapolation from resolved to unresolved scales

u ≈ 2u− u, giving uu ≈ (2u− u)(2u − u) + O(δ4).

The mathematical theory of the whole family of deconvolution models has re-
cently been completed in Layton and Lewandowski [208, 210, 209] and Dunca
and Epshteyn [98]. We present this new theory in Chap. 8. The development
of these models is an outgrowth of recognition of their kinetic energy balance.
To be more precise, consider the LES model arising from (1.31) given by

wt + ∇ ·ww − ν∆w + ∇q = f , (1.32)
∇ · w = 0. (1.33)

Supposing that the averaging operator is the differential filter φ := (−δ2� +
�)−1φ, it can be proved that any weak solution to the above model (1.32) and
(1.33), under periodic boundary conditions, satisfies the energy inequality:

kLES(t) + |Ω|
∫ t

0

εLES(τ) dτ ≤ kLES(0) +
∫ t

0

PLES(τ) dτ,

where
kLES(t) :=

1
2
[‖w(t)‖2 + δ2‖∇w(t)‖2

]
,

PLES(t) :=
∫

Ω

f · w dx,

εLES(t) :=
ν

2|Ω|
[‖∇w(t)‖2 + δ2‖∆w(t)‖2

]
.
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For further details see Sect. 8.5. The above energy inequality is a very strong
regularity result shared by weak solutions, strong solutions (if they exist) and
the usual Galerkin approximations of weak solutions. Based on this observa-
tion, standard mathematical techniques will allow us to conclude an existence
result for the model, Chap. 8.

These scale similarity models have a higher state of mathematical develop-
ment than most LES models. Nevertheless, there are still important questions
left open with these deconvolution models such as how to obtain a globally
stable approximation when using the model coupled with appropriate wall
laws.

1.9 Mixed Models

In practical problems, with the idea of using the “good” properties of each
model (stability for eddy viscosity and accuracy for models derived by system-
atic approximation), combinations of different models are used: the resulting
models are called mixed models. In numerical tests on three-dimensional tur-
bulent flows, almost invariably mixed models are used. These models generally
arise by taking a combination of a chosen LES model with an eddy viscosity
model. There are (at least) three reasons for using mixed models:
(1) An eddy viscosity term is added ad hoc to a model of high formal accuracy
because calculations with the model alone show instabilities. In this scenario,
the eddy viscosity terms must be large enough to stabilize the other modeling
terms.
(2) In going from a continuum model to a discretization of it, some build
up of kinetic energy is observed around the cut-off length scale. This can be
corrected by mesh refinement at constant filter width or by adding an eddy
viscosity term calibrated to the regions and scales at which this build up
occurs. The latter, being cheaper, is usually selected.
(3) Accurate LES models must be based upon some truncated asymptotic
expansion of the space filtered Navier–Stokes equation’s nonclosed term. Of-
ten, an eddy viscosity term is a sensible addition to the model to incorporate
physical effects of the neglected terms. For example, in the expansion of the
subfilter scale stress tensor

uu− uu = uu− uu + uu′ + u′ u + u′ u′,

the last Reynolds stress term u′ u′ is formally O(δ4). Often it is formally
negligible and yet it is thought to describe an important physical process best
captured by an O(δ4) eddy viscosity term. Thus it is sensible to combine
dispersive models of the first two terms on the right-hand side with an eddy
viscosity model for the Reynolds stress term. Selection of the combination of
LES model plus eddy viscosity model is often done by the normal approach
in our field (model-solve-look-model-solve-look. . .). A better understanding
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of the individual components of the mixed model is necessary to develop
better combinations of models. How best to combine different models in one
simulation is clearly an important research problem!

1.10 Numerical Validation and Testing in LES

Although the focus of this book is on the mathematical theory of LES, it
should be emphasized that, as its name implies, LES is a computational ap-
proach! Thus, the development and analysis of an LES model is not com-
plete until the model has been validated and tested in numerical simula-
tions.

Any LES test can be decomposed into a sequence of steps summarized
below:

• Step 1 Choose the numerical method

• Step 2 Choose the test problem

• Step 3 Run the numerical simulation

• Step 4 Interpret the results

All these steps are essential and strongly interdependent, although not
equally developed.

Step 1 is essential for the numerical validation and testing of the LES
model. Finite differences and (pseudo) spectral methods are the traditional
numerical methods used in LES validation and testing. The main reason is
their high-order accuracy, which is believed to be important in the numeri-
cal simulation of turbulent flows. The finite element method, appropriate for
complex geometries, is less developed as a tool in the numerical simulation
and testing of LES.

Numerical analysis is an essential LES component: for example, many
important decisions, such as the relationship between the grid size and the
filter size, are made based on heuristics instead of a sound numerical analysis.
With so many open mathematical questions at the core of the theory of LES,
however, the time is not yet ripe for a universal numerical analysis of LES.
Chap. 11 presents some numerical analysis issues related to LES. In partic-
ular it gives some ideas about Hughes’ [160] Variational Multiscale Method
(VMM). The VMM is an exciting recent development in which the actual
discretization acts, in effect, as a sort of expert system to pick and adjust the
closure model. Admittedly, this chapter ends with more questions than an-
swers. On the other hand, it gives some background for the simulations given
in Chap. 12.
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Steps 2–4 are considerably more developed than Step 1.
Step 2 offers a wide variety of choices for the test problem in LES. Probably

two of the most popular test problems are

1. homogeneous, isotropic turbulence
2. channel flow.

The first one is representative of the class of unbounded turbulence (tur-
bulence away from solid boundaries), and usually employs (pseudo) spectral
numerical schemes. The second is one of the most popular test problems for
wall-bounded turbulence.

Some other popular choices are forced isotropic turbulence, jets (un-
bounded flows), pipe flow, flat plate flow, lid-driven cavity, and backward-
facing step (wall-bounded flows). Each test problem has its own character-
istics/important features that need to be captured by an LES model. The
validation of LES models should include as many such test problems as possi-
ble: the more test problems successfully run, the better the LES model. This
is an important point since, in general, LES models tend to run successfully
on some tests, and poorly on others.

Step 3 illustrates the close relationship among Steps 1–4 : depending on
the test problem chosen in Step 2, one needs to specify different boundary
conditions and initial conditions; depending on the important features/cha-
racteristics of the test problem that need to be collected, monitored, and
interpreted in Step 4, different flow quantities need to be collected and stored.
These quantities are mainly statistics for statistically steady state flows and
pointwise values for time-dependent flows.

We also mention a few practical issues associated with Step 3. First, the
LES runs are usually computationally intensive: a turbulent channel flow LES
run can take a couple of days on a 32 processor machine. The generation of the
initial conditions can be several times more expensive. Secondly, the storage of
the output data could be a challenge: a generic flow field file could be several
Mbytes – if one needs to store thousands of such files for each LES run (to
generate a movie, for example), storage becomes critical.

Thus, before starting any LES validation and testing, one needs to make
sure that the computational resources are available.

Step 4 is another critical step in the numerical validation and testing of
LES. First, one needs to make sure that the monitored quantities correspond
to the important features of the flow considered. Secondly, care needs to be
taken when comparing several LES models: a sound validation requires not
only the test problem to be the same, but also the entire computational setting
(such as, numerical method, initial conditions, boundary conditions, machine
architecture, etc.) It is also recommended that an extensive (DNS) database
associated with the test problem be available. This is generally true for many
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of the most popular LES test problems (e.g., for channel flows [242]) and
provide a reliable benchmark for the numerical validation.

Remark 1.6. The numerical approach described in Step 1–4 is usually re-
ferred to as “a posteriori” testing, implying the fact that the LES model
is effectively tested in an actual numerical simulation. This is in contrast
with “a priori” testing, where results from a fine DNS are filtered and then
used to compute the LES approximation τLES (for example, we recall that
τLES = −νT (∇su) ∇su for eddy viscosity models) to the “true” subfilter-
scale stress tensor

τ = uu − u u.

The closer τLES to τ , the better the LES model. It should be stressed that
the “a posteriori” testing is the final means of validating and testing an LES
model, the “a priori” testing representing just a step in this process. We
also need to mention that there exist LES models that perform very well
in “a priori” tests, while performing poorly in “a posteriori” tests (classical
scale-similarity models are such an example). This is probably related to the
complex interplay between the continuum LES modeling and the numerical
method used in the discretization process.

Chapter 12 represents an introduction to the numerical validation and
testing of LES models. Most of Chap. 12 centers around the turbulent channel
flow, one of the most popular test problems for LES. We explain in detail
the computational setting, the generation of initial conditions, and the way
we collect statistics. We put a special emphasis on backscatter (the inverse
transfer of energy from small scales to large scales), an important feature in
LES.

In our careful numerical exploration, we focus on the LES models intro-
duced in the previous chapters. We permanently relate our numerical findings
to the mathematical results in the earlier chapters. Thus, Chap. 12 represents
not only an introduction to the numerical validation and testing in LES, but
also the perfect illustration of the intrinsic connection among mathematics,
physics, and numerics in LES.
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The Navier–Stokes Equations

2.1 An Introduction to the NSE

The history of the development of the NSE is replete with the names of
the great natural philosophers, beginning with Archimedes (287–212 BC).
In Book I of the first treatise on mathematical fluid mechanics, On Floating
Bodies, Archimedes lays down the basic principles of hydrostatics:

Any solid lighter than a fluid will, if placed in the fluid, be so far immersed

that the weight of the solid will be equal to the weight of the fluid displaced.

(Proposition 5).

Book II, a collection of mathematical gems, deals with the application of
euclidean geometry to the determination of positions of rest and stability of
bodies floating in a fluid.

After the discovery of calculus, important contributions to the field of fluid
mechanics came from D. Bernoulli (1700–1782) and his masterpiece Hydrody-
namica. Another fundamental contribution to fluid mechanics is that of L. Eu-
ler, who was a student of J. Bernoulli and worked together with D. Bernoulli in
St. Petersburg. Euler published several major pieces now collected in volume
11-12-13 of his Opera Omnia (including, for example, Principes généraux du
mouvement des fluids, Hist. Acad. Berlin 1755), deriving the main formulas
for the continuity equation, the Laplace velocity potential equation, and the
Euler equations for the motion of an ideal incompressible fluid. In 1752 he
wrote:

However sublime are the researches on fluids which we owe to Messrs

Bernoulli, Clairaut and d’Alembert, they flow so naturally from my two

general formulæ that one cannot sufficiently admire this accord of their

profound meditations with the simplicity of the principles from which I

have drawn my two equations ...

Together with a similar assumption made by Euler for ideal fluids, the funda-
mental discovery of A.-L. Cauchy (1827) is the stress principle. This principle
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(translation by C. Truesdell) states that “upon any imagined closed surface S
there exists a distribution of stress vectors whose resultant and moment are
equivalent to those of the actual forces of material continuity exerted by the
material outside S upon that inside”

This principle has the simplicity of genius. Its profound originality can be

grasped only when one realizes that a whole century of brilliant geometers

had treated very special elastic problems in very complicated and sometimes

incorrect ways without ever hitting upon the basic idea, which immediately

became the foundation of the mechanics of distributed matter

(C. Truesdell, 1953)

C.L.M.H. Navier (1785–1836), in the paper Mémoire sur les lois du mouve-
ment des fluides (1823), derived the (as we call today) Navier–Stokes equa-
tions of a viscous fluid, despite not fully understanding the physics of the sit-
uation which he was modeling. He did not understand shear stress in a fluid,
but rather he based his work on modifying Euler’s equations to take into ac-
count forces between the molecules in the fluid. Although his reasoning is not
acceptable today:

The irony is that although Navier had no conception of shear stress and

did not set out to obtain equations that would describe motion involving

friction, he nevertheless arrived at the proper form for such equations. (An-

derson, 1997).

The first rigorous derivation of the Navier–Stokes equations was obtained by
G.G. Stokes (1819–1903). Under the advice of W. Hopkins, Stokes began to
undertake research into hydrodynamics and in the 1845 paper On the theories
of the internal friction of fluids in motion he derived the “Navier–Stokes”
equations in a satisfactory way.1

Today it is widely accepted that the Navier–Stokes equations provide a very
accurate description of most flows of almost all liquid and gases. The basic
variables are:

ρ : density, u = (u1, u2, u3) : fluid velocity,

p : pressure, σ : stress tensor associated with viscous forces,
f : external (body) forces/unit volume.

As we will see in detail in Sect. 2.2, the NSE are simply a mathematical
realization of conservation of mass,

ρt + ∇ · (ρu) = 0,

conservation of linear momentum,
1 As we have seen Stokes was not the first to obtain the equation. Navier, Poisson,

and Saint-Venant had already started the analysis of the problem.
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ρ (ut + u · ∇u) −∇ · σ = f ,

and a linear stress–strain relation

σ = µ(∇su) +
(

ξ − 2µ

3

)
(∇ · u) �,

where µ and ξ are material parameters known as the first and second viscosi-
ties, while

(∇su)ij :=
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, . . . , d

is the deformation tensor. The derivation of such equations requires some
deep physical assumptions to simplify the formulas and, as we have seen,
these derive from the intuition and genius of the past centuries.

The mathematical structure of the NSE is best understood for incompress-
ible fluids. Setting ρ ≡ ρ0 = constant and nondimensionalizing the resulting
equations, yields the system we will study herein: the incompressible Navier–
Stokes equations (in nondimensional form):

ut + u · ∇u− 1
Re

∆u + ∇p = f in Ω × (0, T ), (2.1)

∇ · u = 0 in Ω × (0, T ), (2.2)

where the Reynolds number Re > 0 is given by

Re =
UL

µ/ρ0
=

characteristic velocity × characteristic length
kinematic viscosity

.

It is worthwhile for theorists to see a few representative values of Re.

Table 2.1. Representative values of Re

cm. sphere moving 1 cm/s in water Re
.
= 100,

subcompact car Re
.
= 6 × 105,

small airplane Re
.
= 2 × 107,

competitive swimmer Re
.
= 1 × 106,

geophysical flows Re
.
= 1020 and higher.

The NSE (2.1) and (2.2) are assumed to hold in the flow domain (hereafter Ω)
over some time interval 0 < t ≤ T , and are supplemented by an initial velocity

u(x, 0) = u0(x) x ∈ Ω,

and appropriate boundary conditions. We will use mainly the no-slip bound-
ary conditions

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],
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appropriate for internal flow. In several cases analytical and computational
studies are done with periodic boundary conditions (an “easy case” that un-
couples the equations from the boundaries):

(periodic b.c.s) u(x + 2πei, t) = u(x, t), Ω = (0, 2π)3, (2.3)

where ej are the canonical basis functions in �d and (for technical reasons)
subject to a zero mean over (0, 2π)3 on the solution u(x, t) and on all problem
data.

2.2 Derivation of the NSE

The Navier–Stokes equations are a continuum model for the motion of a fluid.
There are various ways to develop the Navier–Stokes equations. For example,
the Boltzmann equation describes the motion of molecules in a rarefied gas.
The Navier–Stokes equations can follow by taking spatial averages of the
Boltzmann equation. They can likewise arise from the kinetic theory of gases.
They have even been derived from quantum mechanics by a suitable averaging
procedure.

The approach we are taking is the more classical approach of continuum
mechanics in which all the flow variables:

density ρ, velocity u, pressure p, · · ·

are assumed to be continuous functions of space and time from the begin-
ning. This approach can be made completely axiomatic; see, for example,
Serrin’s [275] beautiful article. We will give a middle path which is axiomatic
“enough”, but which is compact and still retains a connection to the physical
ideas.

Conservation of Mass
The equation describing conservation of mass is called the continuity equation.
If mass is conserved, the rate of change of mass in a volume V must equal the
net mass flux across ∂V :

d

dt

∫
V

ρ dx = −
∫

∂V

(ρu) · n dS,

where n denotes the outward normal unit vector to ∂V. The divergence theo-
rem thus implies ∫

V

ρt + ∇ · (ρu) dx = 0.

If all the variables are continuous, shrinking V to a point gives:

ρt + ∇ · (ρu) = 0,
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which is the first equation of mathematical fluid dynamics. If the fluid is
homogeneous and incompressible,

ρ(x, t) ≡ ρ0

then conservation of mass reduces to

∇ · u(x, t) = 0,

which is a constraint on the fluid velocity, u.

Conservation of Momentum
Conservation of momentum states that the rate of change of linear momentum
must equal the net forces acting on a fluid particle, or

force = mass × acceleration.

Let us consider a fluid particle. If it is at (x, t) (position x at times t) then
at time t + ∆t it has flowed to (up to the accuracy of the linear approxima-
tion)

(x + u(x, t)∆t, t + ∆t).

Its acceleration is therefore:

a = lim
∆t→0

u(x + u(x, t)∆t, t + ∆t) − u(x, t)
∆t

= ut +
d∑

j=1

uj
∂ui

∂xj
= ut + u · ∇u.

Thus, the mass × acceleration in a volume V ,∫
V

ρ (ut + u · ∇u) dx,

must be balanced by external (body) forces and internal forces.
External forces include gravity, buoyancy, and electromagnetic forces (in

liquid metals). These are collected in a body force term which has accumulated
net force on the volume V given by∫

V

f dx.

Internal forces are the forces that a fluid exerts on itself and include pressure
and the viscous drag that a fluid element exerts on the adjacent fluid. The
internal forces of a fluid are contact forces: they act on the surface of the fluid
element V. If t denotes this internal force vector, then the net contribution of
the internal forces on V is ∫

∂V

t(s) dS.
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Modeling these internal forces correctly is critical to predicting the fluid mo-
tion correctly. We will look at these internal forces more carefully next.

Stress and Strain in a Newtonian Fluid
The internal forces in a fluid are the key to “fluidity” and to the difference
among solids, liquids, and gases. They also differentiate among different flu-
ids.

The idea of Cauchy is that on any (imaginary) plane there is a net force
that depends (geometrically) only on the orientation of that plane.

If this is true, we must have

t = t(n), n = normal vector to an imaginary plane.

The exact dependence of t upon n can be determined rigorously by using
other accepted principles of continuum mechanics. We shall summarize this
below.

Theorem 2.1. If linear momentum is conserved, then the stress forces must
be in local equilibrium (i.e. (A1) holds).

Assumption. The stress forces are in local equilibrium, i.e.

(A1) lim
as V shrinks
to a point

1
surface area (V )

∫
∂V

t(n) dS = 0.

Theorem 2.2. If (A1) holds, then t is a linear function of n. Thus, there is
a 3 × 3 matrix (a tensor σ) with

t(n) = n · σ, σ = σ(x, t).

With this stress tensor σ we can write the equation for conservation of linear
momentum as follows. For a (spatially) fixed volume V∫

V

ρ
(
ut + u · ∇u

)
dx =

∫
∂V

t(n) dS +
∫
V

f dx

=
∫

∂V

n · σ dS +
∫
V

f dx =
∫
V

(∇ · σ + f) dx.

Shrinking V to a point gives

ρ (ut + u · ∇u) = ∇ · σ + f in Ω,

which is the momentum equation.

Theorem 2.3. Angular momentum is conserved if and only if σ is symmet-
ric: σij = σji.
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Remark 2.4. Cauchy proved ⇒ and Boltzmann ⇐.

More about Internal Forces
A fluid has several types of internal forces:
• Pressure Forces: = normal forces. These act on a surface purely normal
to that surface:

pressure forces = −p �n, p(x, t) is the “dynamic pressure”.

One basic postulate due to Cauchy is that a fluid at rest cannot support
tangential stresses. Thus, only pressure forces can exist for a fluid at rest.
• Viscous Forces: The nonpressure part of the stress tensor is called the
viscous stress tensor and is given by

V := σ − p �.

Remark 2.5. The simplest fluid model is that of a perfect fluid. A perfect fluid
is incompressible and without internal viscous forces. Its motion is governed
by the Euler equations :

ut + u · ∇u + ∇
(

p

ρ0

)
=

f
ρ0

in Ω × (0, T )

∇ · u = 0 in Ω × (0, T ).

Our system of equations is not closed until σ is related to the deformation
tensor, ∇su. The simplest relation is a linear law (analog to Hooke’s law)
between stress and strain (force and deformation).
Assumption: Let ∇su = 1

2 (∇u + ∇uT ). Then,

σ = 2µ∇su +
(

ξ − 2µ

3

)
(∇ · u) �,

where µ and ξ are the first and second viscosities of the fluid. The physical
parameter µ is called the dynamic or shear viscosity.

More about σ
It is good to keep in mind in these cases that a linear stress–strain relation is
only a linear approximation about ∇su = 0 in a more general and nonlinear
relation for a real fluid. The first scientist to postulate a linear stress–strain
relation was Newton! For this reason, a fluid satisfying this assumption is
called a “Newtonian fluid”.

More general relations for σ = σ(∇su) exist and are appropriate for fluids
with larger stresses. We shall not go into detail about these fluids herein other
than to state that they are of great practical importance and are not yet
completely understood.
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We thus have the NSE:

ρt + ∇ · (ρu) = 0 in Ω × (0, T )

ρ(ut + u · ∇u) + ∇p −∇ ·
[
2µ∇su +

(
ξ − 2µ

3

)
(∇ · u) �

]
= f in Ω × (0, T ).

If the fluid is incompressible and µ is constant, these reduce to

∇ · u = 0 in Ω × (0, T ) (2.4)

ut + u · ∇u + ∇
(

p

ρ0

)
− µ

ρ0
∆u =

1
ρ0

f in Ω × (0, T ). (2.5)

The pressure p is simply redefined to be p/ρ0. The parameter µ is the fluid’s
viscosity coefficient and

µ

ρ0
=: ν = the kinematic viscosity.

Further Remarks
The derivation of the equation of motion we have given is completely non-
rigorous, but we think that can be more interesting than a formally ac-
curate one. Furthermore, we have no space for the discussion of all the
hypotheses hidden in the derivation of the Euler and Navier–Stokes equa-
tions. Complete details can be found in several references. For the sake of
completeness we must cite Lamb’s book [198] that even if the first edi-
tion dates back to 1879, while the last version is dated 1932, is a refer-
ence that is still up-to-date. Another famous paper is that of Serrin [274],
that contains a deep discussion of several physical and variational problems
related to the fluid dynamics. The reader may also consult some more re-
cent references. Among the others we recall the well-known books by Batch-
elor [17], Landau and Lifshitz [199], and the graduate text by Chorin and
Marsden [64].

2.3 Boundary Conditions

Consider the viscous, incompressible NSE in a bounded domain Ω ⊂ �
3.

Boundary conditions must be imposed on ∂Ω to have a completely speci-
fied problem. Let Γ ⊂ ∂Ω be a solid wall. The first boundary condition is
easy:

no penetration ⇔ u · n = 0, on Γ.

The tangential component is more complex. Navier proposed the following
slip with friction condition:

u · τ j + β n · ∇su · τ j = 0, j = 1, 2,

where τ 1 and τ 2 are orthogonal unit vectors, tangent to ∂Ω.
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The NSE can also be derived from the kinetic theory of gases and it gives
exactly this condition where

β ∼ mean free passes of molecules
macroscopic length

.

Thus, where the stresses are O(1), the no-slip condition

u · τ j = 0, on Γ, j = 1, 2,

is used and agrees well with experiments; if the boundary Γ is moving, this is
modified to read

u = g on Γ, g is the velocity of Γ.

Infinite stresses arise where boundary velocities are incompatible. For exam-
ple, if a piston pushes a fluid down a tube, the point where the piston and tube
meet has a discontinuity in the boundary condition. Physically, one would ex-
pect leakage or the fluid to slip there. Thus, excluding leakage and infinite
stresses in the physical model requires imposing a slip with friction condition
near the contact point. A similar (but less dramatic) example occurs in flow
over an object with sharp corners protruding into the fluid.

Of course, a liquid completely enclosed by stationary solid walls is rightly
considered an “easy” case. Yet it is still hard enough that analytical and
computational studies are done with periodic boundary conditions (2.3), to
uncouple the equations from the boundaries.

This describes only the conditions at a solid, smooth, fixed, and nonporous
wall. Many other conditions are important in practical flow problems. Often,
the most vexing problems in flow simulations are associated with inflow and
outflow boundary conditions, neither of which are considered herein.

2.4 A Few Results on the Mathematics of the NSE

The modern theory of the NSE (actually of a wide2 area of partial differential
equations, PDE in the sequel) began with the work of J. Leray [213]. The
Leray theory (see for instance Galdi [121]) begins with the most concrete and
physically meaningful possible point: the global energy inequality. From that
the most abstract and (even today) mathematically complete theory of the
NSE is directly constructed.

It is impossible to compress the basic theory of NSE into a single chapter.
In this section we try to present some of the ideas underlying the mathematical
analysis of the NSE. We hope to interest the reader (also those that are not

2 The Leray–Schauder theory began from studies on incompressible fluids done by
Leray in the early 1930s, in his doctoral thesis.
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mathematicians) in this field. All the details can be found in the extensive
bibliography that is cited throughout the section.

The study of the NSE opened a really challenging field. In fact the basic
problem of global existence and uniqueness of solutions still resists the effort of
mathematicians! The mathematical research around this topic is very intense
and the reader can find about 4000 papers having the words Navier–Stokes in
the title, about 200 per year over recent decades (AMS MathSciNet Source,
http://www.ams.org/mathscinet).

2.4.1 Notation and Function Spaces

In this section we introduce the basic function spaces needed for the math-
ematical theory of the NSE and we give the definition of weak and strong
solutions. We also recall some existence results, sketching some proofs. The
reader may note that in the seminal paper by Leray [213] weak solutions were
called turbulent solutions, since, in principle, they are not regular and the
name was given in the attempt that such solutions may describe the chaotic
behavior of turbulent flows.

We try to keep the book self-contained and at a level of mathematical
depth understandable to a wide audience. The reader can find an excellent
survey of the mathematics needed in the applied analysis of PDE in the series
of books by Dautray and Lions [84]. In particular, see volume 5 for evolution
problems.

In the sequel, we will need the classical Lp-spaces. We will not distinguish
between scalar, vector, or tensor valued functions.

Given an open bounded3 set Ω ⊂ �d (d = 2, 3) we say that a function
f : Ω → �

n (with n ∈ �) belongs to Lp(Ω), for 1 ≤ p ≤ ∞, if f is measurable
(with respect to the Lebesgue measure) and if the norm

‖f‖Lp =

⎧⎪⎨⎪⎩
[∫

Ω |f(x)|p dx
]1/p if 1 ≤ p < ∞

ess sup
x∈Ω

|f(x)| if p = ∞

is finite. The spaces (Lp(Ω), ‖ . ‖Lp) are Banach spaces and we recall the
Hölder inequality: if f ∈ Lp(Ω) and g ∈ Lp′

(Ω), with 1/p + 1/p′ = 1, 1 ≤
p, p′ ≤ ∞, then ∣∣∣∣∫

Ω

f g dx
∣∣∣∣ ≤ ‖f‖Lp‖g‖Lp′ .

3 Throughout the book we will consider smooth bounded open sets. There are
problems having a physical meaning in which the domain may not be bounded
(e.g. a channel or an exterior domain). In these cases the mathematical theory
becomes more complicated since some properties, especially of divergence-free
functions, may vary a lot. For full details see Galdi [120].
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In the sequel, since the case p = 2 corresponds to the Hilbert space L2(Ω),
which is the most important for our applications, we will use the following
notation:

‖f‖ :=
[∫

Ω

|f(x)|2 dx
]1/2

.

The Hilbert space (L2(Ω), ‖ . ‖) is very important since it is the widest function
space on which the kinetic energy is well-defined. It is a Hilbert space with
the natural scalar product

(u, v) =
∫

Ω

u v dx.

Sobolev Spaces

In the variational formulation of mathematical physics problems, we shall
encounter very often Sobolev spaces. In a first step it will be necessary to
introduce at least the spaces H1(Ω) and H1

0 (Ω). The space H1(Ω) is the
subspace of L2(Ω) consisting of (equivalence classes of) functions with first-
order distributional derivatives in L2(Ω). The space C∞

0 (Ω) will denote the
infinitely differentiable functions on Ω with compact support.

Definition 2.6. The Sobolev space H1(Ω) is defined by

H1(Ω) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ L2(Ω) : there exist gi ∈ L2(Ω), i = 1, . . . , d such that

∫
Ω

u
∂φ

∂xi
dx = −

∫
Ω

gi φdx, ∀φ ∈ C∞
0 (Ω)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Given u ∈ H1(Ω), we denote

∂u

∂xi
= gi and ∇u = (g1, . . . , gd) =

(
∂u

∂x1
, . . . ,

∂u

∂xd

)
. (2.6)

Remark 2.7. In (2.6) the function gi ∈ L2(Ω) represents the weak derivative,
with respect to xi, of the function u. Weak derivatives are defined through
an integration by parts of the product with smooth functions. This definition
is meaningful since for smooth functions weak derivatives coincide with the
usual ones. The interested reader can find extensive investigations of Sobolev
spaces in the book by Adams [4].

The space H1(Ω) is a Hilbert space, equipped with the scalar product

(u, v)H1(Ω) :=
∫

Ω

u v dx +
∫

Ω

∇u∇v dx,

and the corresponding norm

‖u‖H1(Ω) :=
[‖u‖2 + ‖∇u‖2

]1/2
.
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For a function u belonging to H1(Ω), it is not possible (if d > 1) to define
the pointwise values, but it makes sense to define the value of u on the bound-
ary. We consider at least those functions that are vanishing on the boundary
∂Ω.

Definition 2.8. The Sobolev space H1
0 (Ω) is the closure of C∞

0 (Ω) with re-
spect to the norm ‖ . ‖H1 .

The space H1
0 (Ω) represents the subspace of H1(Ω) of functions vanishing

on the boundary. These functions vanish in the traces sense, i.e. in the sense
of H1/2(∂Ω). Without entering into details, we refer again to [4] for the in-
troduction and properties of fractional Sobolev spaces. To use these space,
the reader should be at least familiar with the fact that H1

0 (Ω) is the space
of functions in H1(Ω) that vanish on the boundary, in a generalized sense.
Again, u ∈ H1

0 (Ω) means that u ∈ H1(Ω) and u|∂Ω = 0, provided u is
smooth.

The functions belonging to H1
0 (Ω) satisfy the following property:

Lemma 2.9 (Poincaré inequality). Let Ω be a bounded4subset of �d. Then
there exists a positive constant CP (depending on Ω) such that

‖u‖ ≤ CP ‖∇u‖ ∀u ∈ H1
0 (Ω).

Consequently, ‖∇u‖ is a norm on H1
0 (Ω) equivalent to ‖ . ‖H1 . Furthermore,∫

Ω
∇u∇v dx is equivalent in H1

0 (Ω) to the scalar product (u, v)H1 .

Function Spaces in Hydrodynamics

In the mathematical theory of incompressible fluids there is a need to consider
functions that are divergence-free. A possible way to treat this feature is to
include this constraint directly in the function spaces. In this respect it is
well known (starting from the work of Helmholtz [150] in electromagnetism
and a more recent analysis initiated by Weyl [313]) that any vector field
w : �3 → �

3 (that is decaying to zero sufficiently fast) can be uniquely
decomposed as the sum of a “gradient” and of a “curl”

w = ∇φ + ∇× ψ.

This expression shows how to write a function as a gradient and a divergence-
free part.

In the case of a smooth, bounded, and simply connected domain Ω we can
define (the subscript “σ” stands for solenoidal)

L2
σ :=

{
u ∈ [L2(Ω)]d : ∇ · u = 0 and u · n = 0 on ∂Ω

}
. (2.7)

4 Note that it is enough to require the domain Ω to be bounded at least in one
direction, i.e. that Ω may be included in a “strip”. In the case of periodic functions
the inequality works too, provided we consider functions with vanishing mean
value, i.e.

∫
Ω

u dx = 0.
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The space [L2(Ω)]d is decomposed as the following direct sum:

[L2(Ω)]d = L2
σ ⊕ G, (2.8)

where G is the “subspace of gradients” (provided Ω is smooth and bounded):

G :=
{
u ∈ [L2(Ω)]d : u = ∇p, p ∈ H1(Ω)

}
.

The orthogonal projection operator P : [L2(Ω)]d → L2
σ is often called the

Leray projection operator. We observe that functions in the definition (2.7)
belong to L2(Ω), so the divergence-free constraint is defined in a weak sense:

∇ · u = 0 means
∫

Ω

u · ∇Φdx = 0 ∀Φ ∈ C∞
0 (Ω).

The fact that u · n = 0, where n denotes the exterior normal to ∂Ω, has
to be intended in the very weak sense of H−1/2(∂Ω), the topological dual
of H1/2(∂Ω). Again, the reader not familiar with these spaces can better
understand these properties if we recall that L2

σ is the closure, with respect
to the norm of [L2(Ω)]d, of

V :=
{
v ∈ [C∞

0 (Ω)]d : ∇ · v = 0
}

,

and passing to the limit, only the constraint on the normal part of v is
kept. This is due to the fact that the L2-norm is not strong enough to con-
trol the value of v on ∂Ω. We refer the reader interested in full details to
Ladyžhenskaya [197], Girault and Raviart [137], and Temam [295]. See also
Galdi [120] for further details on the Helmholtz decomposition in Lp-spaces
and unbounded domains. Note that the definition of differential operators
through multiplication by smooth functions and integration by parts is one of
the basic tools in the modern analysis of PDE.

Likewise, we can define the following space:

H1
0,σ :=

{
u ∈ [H1

0 (Ω)]d : ∇ · u = 0
}

,

embedded with the norm of H1
0 (Ω) : that is ‖u‖H1

0,σ
= ‖∇u‖. The space H1

0,σ

is the closure of V with respect to the norm of [H1
0 (Ω)]d (this property may

fail or may be unknown for unbounded or non-smooth domains).
As usual in the study of evolution problems we may consider a function

f : Ω × [0, T ] → �
d as

f : t → f(t,x),

i.e. as a function of time into a suitable Hilbert space (X, ‖ . ‖X). We define
Lp(0, T ; X) as the linear space of strongly measurable functions f : (0, T ) → X
such that the functional

‖f‖Lp(0,T ;X) =

⎧⎪⎪⎨⎪⎪⎩
[∫ T

0

‖f(τ)‖p
X dτ

]1/p

if 1 ≤ p < +∞
ess sup
0<τ<T

‖f(τ)‖X if p = +∞

is finite. In our case X will be either L2
σ or H1

0,σ.
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Remark 2.10. For the numerical approximation we shall need completely dif-
ferent function space settings. In fact, it is very challenging to explicitly con-
struct finite dimensional subspaces of L2

σ or of H1
0,σ [146]. In the numerical

approximation it is very common to resort to the so called mixed-formulation,
where one uses spaces that are not divergence-free and imposes the constraint
in an approximate way. The reader is referred to Gunzburger [146] for an
excellent introduction to the finite element method for incompressible flows,
and to Girault and Raviart [137] for an exquisite mathematical presentation.

2.4.2 Weak Solutions in the Sense of Leray–Hopf

In the study of the NSE it is necessary to introduce a suitable concept of
solution. In generic situations it is hopeless to find smooth solutions, in such
a way that all the space-time derivatives appearing in (2.1) exist in the usual
classical sense. As we will see in the sequel, with this more general definition
of solution it is possible to prove existence (but not uniqueness); see the work
of Leray [213] for the Cauchy problem and Hopf [155] for the initial-boundary-
value problem.

Definition 2.11 (Leray–Hopf weak solutions). We say that a measurable
function u : Ω × [0, T ] → �

d is a weak solution to the NSE (2.1) and (2.2) if

1. u ∈ L∞(0, T ; L2
σ) ∩ L2(0, T ; H1

0,σ);
2. u satisfies (2.1)–(2.2) in the weak sense, i.e. for each φ ∈ C∞

0 (Ω× [0, T )),
with ∇ · φ = 0, the following identity holds:∫ ∞

0

∫
Ω

[
uφt −

1
Re

∇u∇φ − u · ∇uφ

]
dx dt

= −
∫ ∞

0

∫
Ω

f φ dx dt −
∫

Ω

u0 φ(0) dx;

(2.9)

3. the “energy inequality” is satisfied for t ∈ [0, T ]:

1
2
‖u(t)‖2 +

1
Re

∫ t

0

‖∇u(τ)‖2 dτ ≤ 1
2
‖u0‖2 +

∫ t

0

∫
Ω

f(x, τ)u(x, τ) dx dτ.

(2.10)

Weak Formulation

The above identity (2.9) is obtained by multiplying the NSE by a smooth φ
and performing suitable integrations by parts in space-time variables. In par-
ticular, note that the pressure disappears, thanks to the following equality:∫

Ω

∇p φ dx =
∫

∂Ω

p φ · n dσ −
∫

Ω

p ∇ · φ dx, ∀ t ∈ [0, T ],
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which is another way to restate the decomposition (2.8). The first integral
on the right-hand side vanishes due to the fact that φ is zero on ∂Ω; the
second one vanishes since ∇ · φ = 0. The reader may note that in the defi-
nition of weak solutions there is no requirement for the time derivative of u;
furthermore, there are at most space derivatives of the first order. This is the
basic idea behind the weak formulation of PDE: define a wider class (weak
solutions) of functions that are solutions, by means of an integral formulation.
After having proved the existence of more general solutions (this is generally
simpler), the problem is then to show that these weak solutions are unique and,
provided they are smooth, are also classical solutions to the original problem.

Remark 2.12. In the definition of weak solutions the pressure disappears. It is
always possible to associate to each weak solution a corresponding pressure
field, otherwise the weak solution concept will not be meaningful; unfortu-
nately this requires rather sophisticated mathematical tools, based on the
Helmholtz decomposition (2.8). For the introduction of the pressure field, we
refer to some monographs, see for instance Ladyžhenskaya [197], Temam [295],
and Galdi [121].

Remark 2.13. The introduction of weak solutions is based on the philosophical
idea that “looking for solutions in a bigger set, it is easier to find them”. The
irregularity of turbulent flows also suggests that solutions to the NSE may
be not very regular. In spite of these observation and the difficulty of find-
ing explicit solutions for systems of PDE, the reader can find in Berker [26],
a survey paper in the Handbuch der Physik, several (about 400 pages!) exact
solutions, that may help to understand the basic features of incompressible
flows and for benchmarking numerical experiments.

2.4.3 The Energy Balance

In this section we use the dimensional form (2.4) and (2.5) of the NSE, since
we will deal with some physical quantities. However, in the rest of the book
we will use essentially the nondimensional form (2.1) and (2.2).

If (u, p) are classical solutions to the NSE, subject to either no-slip or
periodic boundary conditions, then multiplying (2.4) and (2.5) by p and u,
respectively, integrating over Ω, and applying the divergence theorem one
immediately shows that∫

Ω

ut · u + ν∇u : ∇u − f · u dx = 0. (2.11)

In particular, note that (in the periodic-case the boundary integral vanishes)
the nonlinear term disappears since:∫

Ω

u · ∇uu dx =
∫

Ω

u · ∇|u|2
2

dx =
∫

∂Ω

u · n |u|2
2

dx −
∫

Ω

|u|2
2

∇ · u dx = 0.
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Integrating over time (2.11) gives the energy equality:

k(t) + |Ω|
∫ t

0

ε(τ) dτ = k(0) +
∫ t

0

P (τ) dτ (2.12)

where

k(t) := kinetic energy at time t :=
1
2

∫
Ω

|u|2(t) dx =
1
2
‖u‖2,

ε(t) := energy dissipation rate :=
ν

|Ω|
∫

Ω

|∇u|2(t) dx =
ν

|Ω| ‖∇u‖2,

P (t) := power input through force – flow interaction :=
∫

Ω

f · u dx.

The energy equality (2.12) holds for classical solutions (which may not ex-
ist). Weak solutions satisfy – in principle – only the energy inequality (2.10),
since the above calculations are “formal” if performed on weak solutions; in
particular, the integral

∫ t

0

∫
Ω

ut u dxdτ is not well-defined due to the lack of
regularity of ut. As we will see soon the energy equality and inequality are
the basic tools in the proof of existence of weak solutions. In fact, by using
these results it is possible to get a powerful a priori estimate.

With this tool Leray was able to prove the following result, if Ω = �3. For
a smooth bounded Ω ⊂ �3, see Hopf [155].

Theorem 2.14 (J. Leray (1934), E. Hopf (1951)). Consider u0 and f
with

u0 ∈ L2
σ and f ∈ L2(0, T ; L2

σ).

Then, there exists at least one weak solution to the NSE on [0, T ]. Weak so-
lutions satisfy the energy inequality (2.10) that, in a bounded domain, can be
rewritten in a dimensional form as

k(t) + |Ω|
∫ t

0

ε(t′) dt′ ≤ k(0) +
∫ t

0

P (t′) dt′, ∀ t ∈ [0, T ]. (2.13)

Uniqueness of weak solutions is still not known. (It is a Clay-prize problem
with a million dollar prize offered.) Uniqueness appears to be connected to
the time regularity of the energy dissipation rate. It is known, for example,
that all weak solutions satisfy∫ T

0

ε(t′) dt′ < ∞, (2.14)

while weak solutions are unique if, e.g.∫ T

0

ε2(t′) dt′ < ∞. (2.15)
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In fact, Leray conjectured connection between turbulence and breakdown
of uniqueness in weak solutions to the NSE. In particular, conjecturing
that perhaps ε(t) has singularities which are integrable but not square in-
tegrable: (2.14) holds but (2.15) might fail. This conjecture is still an open
question and it is still unknown if equality or inequality holds in (2.13); see
Duchon and Robert [97], and Galdi [121] for a very clear elaboration of this
theory.

As successful as the Leray theory has been, it has taken many years to
begin to establish a connection between it and the Kolmogorov (physical)
theory of homogeneous, isotropic turbulence. The status of this connection
is well presented in [112] so we shall skip to the essential elements of Kol-
mogorov’s theory (often called the “K-41” theory) needed in this exposition.
For more details see the paper by Kolmogorov [191] and the clear exposition
in [117, 214, 258].

Consider the NSE under periodic boundary conditions. Let F(u) = û
denote the Fourier transform of the velocity field with dual variable k with
k := |k| = (k2

1 + k2
2 + k2

3)
1/2. Define

E(k, t) :=
1
2

∫
|k|=k

|û(k)|2 dk, and E(k) := lim
T→∞

1
T

∫ T

0

E(k, t) dt.

Data from many different turbulent flows (see Fig. 7.4 in Frisch [117]) reveal
a universal pattern. Plotting the data on (log(k), log E(k)) axes, the universal
pattern is a k−5/3 decay in E(k) through a wide range of wavenumbers known
as the inertial range. By combining Richardson’s [263] idea of an energy cas-

Fig. 2.1. A depiction of the observed energy cascade
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cade in turbulent flows with audacious physical guesswork and dimensional
analysis, Kolmogorov was able to give a clear explanation of Fig. 2.1. We
recall Richardson’s famous verse on big whirls and lesser whirls

“Big whirls have little whirls what feed on their velocity, little whirls
have smaller whirls, and so on to viscosity” (L.F. Richardson)

was inspired by J. Swift’s description of a cascade of poets:

“So, nat’ralists observe a flea
Hath smaller fleas that on him prey;
And these have smaller yet to bite ‘em.
And so ad infinitum.
Thus, every poet, in his kind,
Is bit by him that comes behind.” (J. Swift)

and by L. da Vinci’s descriptions of turbulent flows as composed of an area
with energy input at the large scales, an area of interactions and an area of
decay into small scales:

“where the turbulence of water is generated,
where the turbulence of water maintains for long,
where the turbulence of water comes to rest.” (L. da Vinci)

Kolmogorov began his analysis with the assumption that, roughly speaking,
far enough away from walls, after a long enough time, and for high enough
Reynolds numbers

time averages of turbulent quantities depend only on one number, the
time-averaged energy dissipation rate:

〈ε〉 := lim
T→∞

1
T

∫ T

0

ε(t) dt.

Two remarkable consequences were that:

(1) the smallest persistent eddy in a turbulent flow is of diameter
O(Re−3/4);
(2) E(k) must take the universal form

E(k) = α 〈ε〉2/3 k−5/3, α ∼= 1.4,

with 〈ε〉 the only parameter changing from one turbulent flow to an-
other.

The first estimate of O(Re−3/4) accounts for the often quoted requirement of
O(Re9/4) grid points in space for the direct numerical simulations of a tur-
bulent flow. Considering the magnitudes of representative Reynolds numbers
(Table 2.1), it also explains the 1949 assessment of turbulence of von Neu-
mann:
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“It must be admitted that the problems are too vast to be solved by
a direct computational attack.” (J. von Neumann, 1949),

which is still true today and provides the motivation for the development of
LES!

2.4.4 Existence of Weak Solutions

In this section, which requires a little more mathematical background, we
sketch the existence proof for weak solutions, following essentially the ap-
proach of Hopf. The very interesting idea of Leray is also recalled at the end
of the section. This section requires, at least, knowledge of the basic results
of linear functional analysis; see for instance the first chapters in Brezis [45].

The existence of weak solutions will be given by using the Faedo–Galerkin
method introduced by Faedo [104] and Galerkin [123]. The main idea of this
method is to approximate the natural Hilbert/Banach space V in which the so-
lution u lives by a sequence of finite dimensional spaces {Vm}m≥0, Vm ⊂ V. In
this way the original problem can be reduced to a family of algebraic systems
(for elliptic problems) or to a family of ordinary differential equations – ODE
(for parabolic problems) for an unknown um ∈ Vm. Then, if it is possible to
prove suitable estimates independent of m, it is also possible to pass to the
limit as m → ∞ and, if we are lucky, um converges to a solution u to the
original problem. For several applications of this technique in the context of
nonlinear PDE we suggest the excellent monograph by J.-L. Lions [221].

In the case of the NSE the application of this method is not trivial, since
the equations are nonlinear and some delicate compactness results are needed
in order to pass to the limit as m → ∞. Instead of a general theory of Faedo–
Galerkin methods, we prefer to show how this method works in our particular
case. Without going into detail, we will show the proof of the existence of
weak solutions. We suggest the reader follows at least the main steps, to
see (a) an explicit application of the Faedo–Galerkin method and (b) the
energy estimates, that are common to many other problems of mathematical
physics.

Proof (of Theorem 2.14). In the case of the NSE, we approximate the natural
space L2

σ, with Vm ⊂ L2
σ such that dim Vm = m, defined in the following way:

Vm := Span〈W1, . . . ,Wm〉.
The functions Wi(x) are eigenfunctions of the stationary Stokes equations,
i.e. they satisfy for k ∈ �, the linear system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆Wk + ∇Pk = λkWk in Ω,

∇ ·Wk = 0 in Ω,

Wk = 0 on ∂Ω.
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It is possible to prove (see Constantin and Foiaş [74] and Temam [295]) that
the eigenvalues λk satisfy 0 < λ1 ≤ · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ . . . , while
Wi can be chosen to form an orthonormal “basis” of L2

σ. The latter means
that ∫

Ω

WiWj dx = δij :=

⎧⎨⎩
1 if i = j

0 if i �= j

and that finite linear combinations of Wi are dense in L2
σ.

We consider the Faedo–Galerkin approximate function:

um(x, t) =
m∑

k=1

gi
m(t)Wi(x),

and we look for a function um that satisfies the following initial value prob-
lem:⎧⎨⎩

d

dt
um − 1

Re
∆um + Pm(um · ∇um) = Pmf for t ∈ (0, T )

um(0) = Pmu0,
(2.16)

where the operator Pm denotes the orthogonal projection onto Vm.
The weak form of (2.16) is similar to the weak formulation of the NSE,

and it is a weak formulation in which the test functions belong to Vm.
We have to solve, for k = 1, . . . , m the following Cauchy problem for
a system of ODE (recall that we denote by ( . , . ) the scalar product in
L2(Ω)):⎧⎨⎩

d

dt
(um,Wk) +

1
Re

(∇um,∇Wk) + (um · ∇um,Wk) = (f ,Wk) for t ∈ (0, T )

um(x, 0) = Pm(u0(x)),
(2.17)

with the gi
m(t) : [0, T ] → � that are functions of class C1. It is easily seen that

the above system of ODE for the unknown gi
m(t), satisfy the hypotheses of the

Cauchy–Lipschitz theorem. Consequently, the local existence and uniqueness
of the solution can easily be proved with standard tools. This solution exists
in some time interval [0, Tm], and to prove that Tm = T we will use an a priori
estimate.

By multiplying (2.17)1 by gk
m(t) and summing over k, we get the following

identity:

1
2

d

dt
‖um(t)‖2 +

1
Re

‖∇um(t)‖2 = (f(t),um(t)), t ∈ [0, Tm). (2.18)

This procedure corresponds to multiplying the equation in (2.16)1 by um

and to integrating over Ω. Note that the nonlinear term disappears as in
Sect. 2.4.3!
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Then, by using the Hölder and Poincaré inequalities we get

1
2

d

dt
‖um(t)‖2 +

1
Re

‖∇um(t)‖2 ≤ ‖f(t)‖ ‖um(t)‖ ≤ CP ‖f(t)‖‖∇um(t)‖.

With the Young inequality

ab ≤ ap

p
+

bp′

p′
, for

1
p

+
1
p′

= 1, 1 < p < ∞, (2.19)

we finally get

1
2

d

dt
‖um(t)‖2 +

1
Re

‖∇um(t)‖2 ≤ C2
P Re

2
‖f(t)‖2 +

1
2Re

‖∇um(t)‖2.

We can “absorb” the last term on the right-hand side into the second on the
left-hand side, to deduce

d

dt
‖um(t)‖2 +

1
Re

‖∇um(t)‖2 ≤ C2
P Re‖f(t)‖2. (2.20)

A first integration of the above inequality shows that, for each t ∈ [0, Tm),

‖um(t)‖2 ≤ ‖Pmu0‖2 + C2
P Re

∫ T

0

‖f(t)‖2 dt ≤ ‖u0‖2 + C2
P Re‖f(t)‖2

L2(0,T ;L2).

Recall also that ‖Pmu0‖ ≤ ‖u0‖, due to the fact that Pm is a projec-
tor.

Since the above bound is independent of m, a standard continuation ar-
gument for ODE implies that the maximal time of existence of solution, Tm,
equals T . In fact, the above inequality proves that ‖um(t)‖ is bounded uni-
formly in (0, T ) and this contradicts the necessary condition for a blow-up of
gi

m(t) as t → Tm; see for instance Hartman [148].
Integrating (2.20) with respect to t on (0, T ) we also obtain

‖um(T )‖2 +
1

Re

∫ T

0

‖∇um(τ)‖2 dτ ≤ ‖u0‖2 + C2
P Re‖f‖2

L2(0,T ;L2).

Remark 2.15. We derived in detail these estimates since they represent the
core of the proof. We stress their importance since similar estimates can be
derived, with the same techniques, for a wide range of different PDEs. The
reader may also note that a similar estimate can be derived if f belongs just
to L2(0, T ; (H1

0,σ)′), where (H1
0,σ)′ is the topological dual of H1

0,σ.

We have now proved (recall Lemma 2.9) that the sequence {um}m≥1 is uni-
formly (in m) bounded in

L∞(0, T ; L2
σ) ∩ L2(0, T ; H1

0,σ).
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Then, we can use classical weak compactness5 results (see Brezis [45]) to show
that from the sequence {um}m≥1 we can extract a subsequence (relabeled
again as {um}m≥1) such that⎧⎨⎩um

∗
⇀ u in L∞(0, T ; L2

σ)

um ⇀ u in L2(0, T ; H1
0,σ).

In the above expression ⇀ denotes the weak convergence, while ∗
⇀ denotes

the weak-∗ convergence. These properties can be expressed, respectively,
as⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫ T

0

∫
Ω

umv dx dt →
∫ T

0

∫
Ω

uv dx dt ∀v ∈ L1(0, T ; L2
σ)∫ T

0

∫
Ω

∇um∇v dx dt →
∫ T

0

∫
Ω

∇u∇v dx dt ∀v ∈ L2(0, T ; H1
0,σ).

The limit function u has the required regularity for a weak solution, but the
most difficult point is to show now that such u is indeed a weak solution to
the NSE, and in particular that (2.9) is satisfied.

The difficult technical point (this is one of the challenges in the study of
nonlinear PDE) is now to analyze the following:∫ T

0

∫
Ω

um · ∇um φ dx dt
?−→

∫ T

0

∫
Ω

u · ∇uφ dx dt. (2.21)

5 We have no space here to review the basic results needed to extract weakly (or
weakly-∗) converging subsequences. Essentially they derive from the Banach–
Alaoglu–Bourbaki theorem and other classical results on Banach spaces, see
Brezis [45]. The reader should be acquainted at least with the following theo-
rem: let (X, ‖ , ‖X ) be a Banach space. If {φn}n ⊂ X ′ is a bounded sequence,
then it is possible to extract a subsequence φnk weakly-∗ converging to some
φ ∈ X ′, that is

lim
k→+∞

〈φnk , x〉 = 〈φ,x〉 ∀ x ∈ X ⊂ X ′′ = (X ′)′.

Furthermore if X is also reflexive, i.e., X ′′ = X then the convergence is weak and
not weak-∗.
A typical case of a reflexive space is a Hilbert space. If H, endowed with the
scalar product ( . , . ), is a Hilbert space and {xn}n ⊂ H is a sequence such that
‖xn‖H ≤ C, then there exists x ∈ H and a subsequence xnk such that

lim
k→+∞

(xnk , y) = (x, y), ∀ y ∈ H.

In our case we are using that L2(0, T ; H1
0,σ) is a Hilbert space, while the nonreflex-

ive Banach space L∞(0, T ;L2
σ) is the topological dual (see [221]) of L1(0, T ;L2

σ).
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To pass to the limit in the nonlinear expression it is necessary to have
some kind of strong convergence. In fact, the product of a couple of sequences
both weakly converging may not converge. Hopf succeeded in proving that the
sequence {um}m≥1 satisfies also the following property of strong convergence:

um → u in L2(0, T ; L2(C)), for each cube C ⊂ Ω ⊆ �d. (2.22)

This property is obtained by Hopf as an elegant consequence of the Friederichs
inequality (see page 114). With (2.22) it is rather easy to pass to the limit in
the nonlinear term (see for instance Galdi [121] page 20).

The energy inequality is finally proved by using the fact that the smooth
um satisfies the energy equality. By passing to the limit and using the lower
semicontinuity of the norm we finally arrive at the inequality (2.10). Note that
it is in this technical limit procedure that we pass from energy equality to en-
ergy inequality and spurious energy dissipation may take place. The diligent
reader may also observe that in the extraction of the subsequence we used the
axiom of choice and this Galerkin procedure is not at all constructive, since
we do not know if the entire sequence {um}m≥1 converges to u! (In particular
this may happen provided we have a uniqueness result.)

We observe that a posteriori it is possible to show that the time derivative
of u satisfies certain properties. In particular

ut ∈
⎧⎨⎩

L4/3(0, T ; (H1
0,σ)′) if Ω ⊂ �3

L2(0, T ; (H1
0,σ)′) if Ω ⊂ �2.

We also consider the initial datum: in which sense does u(x, 0) = u0(x) since
the function u is not continuous in t? It is possible to prove (possibly after
redefining the velocity on a set of zero Lebesgue measure) that u is weakly
continuous in L2

σ, i.e.

lim
t→t0

∫
Ω

u(t,x)v(x) dx =
∫

Ω

u(t0,x)v(x) dx, ∀ t0 ∈ [0, T ], ∀v ∈ L2
σ.

This implies, together with the energy inequality and the semicontinuity of
the norm (see for instance Galdi [121] page 21), that

lim
t→0

‖u(t) − u0‖ = 0. ��
On uniqueness of weak solutions. Let us see in a heuristic way why, at
present, uniqueness of weak solutions is still an open problem. Let us consider
two weak solutions u1 and u2, corresponding to the same initial datum u0

and to the same external force f . Let us take the difference of the equation
satisfied by u2 from that satisfied by u1 to get

(u1 − u2)t − 1
Re

∆(u1 − u2) + u1 · ∇u1 − u2 · ∇u2 + ∇(p1 − p2) = 0.



52 2 The Navier–Stokes Equations

By subtracting and adding the term u1 ·∇u2 we can rewrite the latter identity
in terms of w = u1 − u2 and q = p1 − p2 as follows:

wt − 1
Re

∆w + ∇q + u1 · ∇w + w · ∇u2 = 0.

By multiplying by w and with integration by parts (note that
∫

Ω
u1 ·

∇ww dx = 0) we get

1
2

d

dt
‖w‖2 +

1
Re

‖∇w‖2 = −
∫

Ω

w · ∇u2 w dx. (2.23)

This calculation is purely formal, but it gives a feeling for the difficulties in
dealing with weak solutions. To estimate the integral on the right-hand side we
need the following interpolation results. The proof of the following proposition
(that is a particular case of the Gagliardo–Nirenberg inequalities) can be given
with elementary tools, namely a clever application of Hölder inequality; see
Ladyžhenskaya [197]. Due to its importance it is stated as Lemma 1 of Chap. 1
in [197].

Proposition 2.16. Let Ω be any open subset of �d. Then, for any function
belonging to H1

0 (Ω)

‖u‖L4 ≤
⎧⎨⎩

21/4‖u‖1/2‖∇u‖1/2 if Ω ⊂ �2,

41/4‖u‖1/4‖∇u‖3/4 if Ω ⊂ �3.
(2.24)

By using the Hölder inequality with exponents 4, 2, and 4, the above propo-
sition (in Ω ⊂ �3) and Young inequality (2.19) with exponents 4 and 4/3 we
get ∣∣∣∣∫

Ω

w · ∇u2 w dx
∣∣∣∣ ≤ ‖w‖2

L4‖∇u2‖2 ≤ c ‖w‖1/2‖∇w‖3/2‖∇u2‖

≤ 1
Re

‖∇w‖2 + c1‖w‖2‖∇u2‖4.

Now we recall another fundamental tool in the analysis of time-dependent
PDE.

Lemma 2.17 (Gronwall lemma). Let f, g : [α, β] → �
+ be two nonnega-

tive, continuous functions and let C ≥ 0 a given real constant. Let us suppose
that

f(t) ≤ C +
∫ t

α

f(τ) g(τ) dτ, ∀ t ∈ [α, β].

Then,

f(t) ≤ C e
∫ t

α
g(τ) dτ .
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The hypotheses of the above lemma can be weakened, by requiring, for in-
stance, g to be simply an L1(0, T ) function, instead that of a continuous
function.

From integration of (2.23), together with the “Ladyžhenskaya inequal-
ity” (2.24) we obtain

‖w(t)‖2 +
1

Re

∫ t

0

‖∇w(τ)‖2 dτ ≤ ‖w(0)‖2 + 2c

∫ t

0

‖∇u2(τ)‖4‖w(τ)‖2 dτ,

and then the Gronwall lemma will imply that

‖w(t)‖2 ≤ ‖w(0)‖2 e
2c

∫ t

0

‖∇u2(τ)‖4 dτ
.

Since w(0) = 0, this will prove that w = u1 −u2 ≡ 0 on [0, T ], provided that∫ T

0

‖∇ui(τ)‖4 dτ < ∞ ⇐⇒ ∇ui ∈ L4(0, T ; L2(Ω)), for i = 1, 2.

However, we do not know whether it is true, since u2 is a weak solution and
∇u2 belongs just to L2(0, T ; L2(Ω)). We recall that Lp(0, T ; X) ⊂ Lq(0, T ; X),
provided that p ≥ q, and L4(0, T ; L2) is a subspace of L2(0, T ; L2).

Remark 2.18. From the above calculation we can see that it is sufficient to
require that only u2 is smoother than a weak solution, to prove uniqueness,
even if a proof cannot be carried on in this way. Some smoothing to justify
the calculations is necessary, but the following result is true: if at least one of
the two weak solutions ui belong to L4(0, T ; H1

0,σ), then u1 = u2. The proof
is due to Sather and Serrin, see Serrin [275] and also Temam [295].

Remark 2.19. By using the same procedure and by using (2.24) for a two-
dimensional domain, it can be shown that the following estimate holds:

d

dt
‖w(t)‖2 +

1
Re

‖∇w(t)‖2 ≤ 2c ‖∇u2(t)‖2‖w(t)‖2 .

In this case it is possible to apply the Gronwall lemma to deduce that, if
Ω ⊆ �2, then weak solutions are unique. In the 2D case the above calcula-
tions are not formal, due to the fact that, for instance, u · ∇u ∈ L2(0, T ; L2)
and since u ∈ L2(0, T ; H1

0,σ) and ut ∈ L2(0, T ; (H1
0,σ)′), then∫ t

0

〈ut(τ),u(τ)〉 dτ =
1
2
‖u(t)‖2 − 1

2
‖u0‖2 ∀ t ∈ [0, T ],

where 〈 . , . 〉 denotes the duality pairing between H1
0,σ and its dual (H1

0,σ)′.
This is the remarkable difference between the 2D and the 3D case and

this uniqueness result was proved for the first time in Kiselev and Ladyžhens-
kaya [190]. In the same paper the reader can find the interesting estimate
that proves how the 3D problem for the vector Burgers equations (the NSE
without pressure and the divergence-free constraint) is well-posed in the 3D
case, see also Galdi [121].
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Final Considerations

In this section we presented the basic tools needed to prove existence of a weak
solution. These tools will be used extensively in the following chapters. As
mentioned in the introduction, we did not give mathematical details, since it
should also be considered as a “playground” for nonmathematicians. People
coming from other areas should focus on the basic strategy of the Faedo–
Galerkin method, since it can be applied to many other problems: the ap-
proximation of the problem, the a priori estimate (obtained by multiplying
the solution by itself), and the use of the Gronwall lemma (an elementary but
extremely powerful result).

2.4.5 More Regular Solutions

Since at present it is not possible to prove the uniqueness of weak solutions,
we investigate the existence of more regular solutions.

If the initial data are more regular, say u0 ∈ H1
0,σ, then it is possible to

prove the local-in-time existence of more regular solutions, the so called strong
solutions.

Definition 2.20. We say that a weak solution u is a strong solution if⎧⎨⎩
u ∈ L∞(0, T ; H1

0,σ) ∩ L2(0, T ; H1
0,σ ∩ [H2(Ω)]d),

ut ∈ L2(0, T ; L2
σ),

where H2(Ω) ⊂ L2(Ω) is the space of (classes of equivalence of) functions in
L2(Ω) with derivatives up to the second order in L2(Ω).

The concept of strong solution is very important, for the following reasons:

(a) strong solutions are unique, also in the wider class of weak solutions;
(b) strong solutions satisfy the energy equality;
(c) a strong solution becomes smooth (for each positive time) in space-time

variables if ∂Ω, u0 and f are smooth.

Unfortunately, we are able to prove the existence of strong solutions only for
small times, or small data.

Theorem 2.21. Let u0 ∈ H1
0,σ and f ∈ L2(0, T ; L2

σ). Then there exists 0 <
T0 ≤ T such that there exists a unique strong solution in [0, T0). The time T0

depends on f , ‖∇u0‖, and Re; see (2.29).

Proof. We do not give the complete proof, but we show the basic a priori
estimates involved in the proof of Theorem 2.21. If we multiply (2.17) by
λkgk

m(t), sum over k (note that since Wi is an eigenfunction of the Stokes
operator, this corresponds to multiplying the equations by −P∆um, see [261]),
and integrate by parts over Ω we obtain
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1
2

d

dt
‖∇um‖2 +

1
Re

‖P∆um‖2 = (f ,−P∆um) + (um · ∇um, P∆um). (2.25)

We estimate the first term on the right-hand side by the Schwartz inequality

|(f ,−P∆um)| ≤ ‖f‖ ‖P∆um‖ ≤ 1
4Re

‖P∆um‖2 + Re‖f‖2.

The second term requires two inequalities that will be very useful in the sequel.
For a proof see, for instance, Adams [4].

Proposition 2.22 (Convex-interpolation inequality). Let f ∈ Lr(Ω) ∩
Ls(Ω) with 1 ≤ r < s ≤ ∞. Then, f ∈ Lp(Ω) for each r ≤ p ≤ s and the
following inequality holds

‖f‖Lp ≤ ‖f‖θ
Lr‖f‖1−θ

Ls , with θ satisfying
1
p

=
θ

r
+

1 − θ

s
. (2.26)

Proposition 2.23 (A special case of the Sobolev embedding). Let
f ∈ H1(Ω), with Ω ⊂ �3. Then, there exists a positive constant C = C(Ω)
(independent of f) such that

‖f‖L6 ≤ C(Ω)‖∇f‖ ∀ f ∈ H1(Ω). (2.27)

In particular, in Sect. 1 of [197], the reader can find an elementary proof
for the fact that if in addition f ∈ H1

0 (Ω), then the estimate holds with
C = 481/6, for any open set Ω ⊂ �

3. We can now estimate the last term
in (2.25) as follows: apply the Hölder inequality (with exponents 6, 3, and 2)
to get

|(um · ∇um, P∆um)| ≤ ‖um‖L6‖∇um‖L3‖P∆um‖.
Then, apply the interpolation inequality (2.26) to the second term to get

|(um · ∇um, P∆um)| ≤ ‖um‖L6‖∇um‖1/2‖∇um‖1/2
L6 ‖P∆um‖.

Finally an application of the Sobolev embedding (2.27) and the Young in-
equality (with exponents 4 and 4/3) shows that

|(um · ∇um, P∆um)| ≤ C‖∇um‖3/2‖P∆um‖3/2

≤ 1
4Re

‖P∆um‖2 + C1Re3‖∇um‖6.

The final differential inequality is then

d

dt
‖∇um‖2 +

1
Re

‖P∆um‖2 ≤ 2C1Re3‖∇um‖6 + 2Re‖f‖2. (2.28)

To avoid inessential calculations, we consider from now on only the case f ≡ 0.
The results that can be obtained are essentially the same as those that can
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be proved if f �= 0. In Chap. 7, we shall analyze a very similar situation and
we refer the reader to that chapter for further details.

If we set y(t) = ‖∇u(t)‖2 we are left with the differential inequal-
ity ⎧⎪⎪⎨⎪⎪⎩

d

dt
y(t) ≤ CRe3[y(t)]3

y(0) = y0 = ‖∇u0‖2,

which implies

y(t) ≤ y0√
1 − 2y2

0CRe3t
, for 0 ≤ t < T0 :=

1
2y2

0CRe3
. (2.29)

In fact, Y (t) := y0/
√

1 − 2y2
0CRe3t is the solution of the Cauchy prob-

lem ⎧⎪⎪⎨⎪⎪⎩
d

dt
Y (t) = CRe3[Y (t)]3

Y (0) = y0

and since y(0) = Y (0) and the slope of y is smaller than that of Y (y′ ≤ Y ′)
we get that y(t) ≤ Y (t). A comparison argument like this one is at the basis
of many results on nonlinear evolution PDE.

This argument gives an estimate on the life-span of the function um and
shows that {um}m≥1 is bounded uniformly (in m) in

L∞(0, T ; H1
0,σ), ∀T < T0.

Integration in time of (2.28) shows that {P∆um}m≥1 is bounded uniformly
(in m) in

L2(0, T ; L2(Ω)), ∀T < T0.

Then, by using a result of elliptic regularity for the Stokes equations (see
for instance Beirão da Veiga [21] for an elementary proof) we obtain that in
H1

0,σ ∩ [H2(Ω)]d the norm ‖P∆g‖ is equivalent to ‖g‖H2(Ω). This implies that
{um}m≥1 is bounded uniformly in

L∞(0, T ; H1
0,σ) ∩ L2(0, T ; H1

0,σ ∩ [H2(Ω)]d), ∀T < T0.

By a limit procedure we can show that um converges to some u sat-
isfying the same properties and then we construct a strong solution as
claimed. Uniqueness can be proved by using exactly the argument that fails
on weak solutions. The fact that the energy equality is satisfied is rather
technical. ��
The additional regularity of the strong solutions is summarized in the following
theorem:
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Theorem 2.24. Let u be a strong solution in [0, T ]. If Ω is of class C∞ and
if f ∈ C∞((0, T ] × Ω) then

u ∈ C∞([ε, T ]× Ω), ∀ ε > 0.

We do not give the proof of this result; we just sketch the idea of the technique
of bootstrapping that can be used in the proof. The main idea is to consider
the linear evolution problem

ut − 1
Re

∆u + v · ∇u + ∇p = f in �3 × (0, T )

∇ · u = 0 in �3 × (0, T ),
(2.30)

where v is a given function that has the same regularity of the strong solu-
tion u, and ∇·v = 0. Then, due to the fact that it is a simpler problem (being
linear), it is possible to prove for the solution to (2.30) more regularity than
the original one known on v. This holds for each v with a given regularity
and in particular also for v = u. Due to the uniqueness of strong solutions,
this shows how the strong solution u has more regularity, namely the regu-
larity of the solution to (2.30). Using again the same argument, with a now
smoother v we can go further. Unfortunately this arguments fails if v belongs
just to L2(0, T ; L2

σ)∩L2(0, T ; H1
0,σ), since in this case we cannot prove for the

solution of (2.30) more regularity than that of weak solutions.
In this respect we note that to start the bootstrap argument it will also

be sufficient to know that

u ∈ Lr(0, T ; Ls(Ω)) for
2
r

+
d

s
= 1. (2.31)

Weak solutions satisfying the above property are unique and smooth. Note
that it is not known whether weak solutions do satisfy condition (2.31) if
d = 3, while it is proved that they satisfy it for d = 2. The justification of the
above condition can be understood in the light of the scaling invariance. In
fact, (forget the boundaries and imagine functions in �d) if (u(x, t), p(x, t))
is a solution to the NSE then also the family

(uλ, pλ) = (λu(λx, λ2t), λ2p(λx, λ2t)) for each λ > 0

is a solution. They are the so-called self-similar solutions. In particular the
Lr(0, T ; Ls(Ω))-norms that are independent of λ are those and only those
satisfying (2.31).

Remark 2.25. In the above theorem the regularity up to t = 0 cannot be
obtained even if u0 ∈ [C∞(Ω)]d∩H1

0,σ. To have smoothness at the initial time,
some additional compatibility conditions must be satisfied, see Temam [296].

Remark 2.26. In the 2D case we can follow the same path, to obtain the
following estimate (note that the results of Proposition 2.16 hold also for
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f ∈ H1 (instead of belonging to H1
0 ), but on the right-hand side there is now

a positive number C = C(Ω) depending on Ω:

|(um · ∇um,−P∆um)| ≤ ‖um‖L4‖∇um‖L4‖P∆um‖

≤ C‖um‖1/2‖∇um‖‖P∆um‖3/2

≤ 1
4Re

‖P∆um‖2 + c1Re3‖um‖2‖∇um‖4.

Now, from the energy equality we have

‖um(t)‖ < +∞, t ∈ [0, T ] and
∫ T

0

‖∇um(τ)‖2 dτ < +∞

and consequently we derive the following inequality for y(t) = ‖∇um(t)‖2:

d

dt
y(t) ≤ c[y(t)]2 = c y(t) · y(t), with

∫ T

0

y(τ) dτ < +∞.

This implies (with the Gronwall lemma)

y(t) ≤ y(0) e
c

∫ t

0

y(τ) dτ
< +∞ ∀ t ∈ [0, T ],

showing that the life-span of strong solutions is all the positive half-line. In
two dimensions, if we start from a smooth datum, we have a smooth solution
for each positive time (provided the external force is smooth). In the end,
these results on strong solutions show the main difference between the 2D
and the 3D cases!

On the Possible Loss of Regularity

We have shown that for a smooth enough initial datum we can construct
a unique strong solution in a time interval [0, T0) and we have given an explicit
estimate on T0 in terms of the H1

0 -norm of the initial datum and of the
Reynolds number (recall (2.29)). We want to analyze what should happen
at a time T ∗ at which a solution loses its regularity, if such a T ∗ exists!
The first result, that is a clever application of the information hidden in the
energy inequality and in differential inequality (2.28) is the so called Théorème
de Structure of Leray, that furnishes preliminary, but deep insight into the
structure of weak solutions.

Theorem 2.27 (Leray [213]). Let u be a weak solution. Then, there exists
a set U ⊂ (0,∞), that is a union of disjoint intervals, such that
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1. the Lebesgue measure of (0,∞)\U vanishes;
2. u ∈ C∞(Ω × U);
3. there exists TR ∈ (0,∞) such that U ⊃ (TR,∞);
4. there exists λ = λ(Ω, Re) > 0 such that, if ‖∇u0‖ < λ, then U = (0,∞).

We do not give the proof here, even though it uses only elementary tools
coupled with deep observations, since it is outside the scope of this book. The
reader can find Leray’s proof [213], with a modern explanation, in Galdi [121].
Essentially in the proof it is enough to show that the above properties are
satisfied by strong solutions, since they become smooth, whenever they exist.

Theorem 2.27 states that the irregularity set is very small, and in particular
that any weak solution, after a possible (transient) period of irregularity and
nonuniqueness, becomes regular. In fact it is smooth for t > TR. Furthermore,
provided u0 ∈ H1

0,σ then u is smooth on a set that contains (but it is much
bigger than) (0, T0) ∪ (TR,∞), for a strictly positive T0. The time T0 can
be estimated; on the contrary the proof of the existence of TR is done by
contradiction and so it does not give estimates for TR.

We know now that the set of possible singularities is very small. We shall
now give further results that can be obtained, squeezing out all the information
from the energy inequality and (2.28).

Definition 2.28. We say that a solution u becomes irregular at the time T ∗

if and only if

(a) T ∗ < ∞;
(b) u ∈ C∞((s, T ∗) × Ω), for some s < T ∗;
(c) it is not possible to extend u to a regular solution in any interval (s, T ∗∗),

with T ∗∗ > T ∗.

The number T ∗ is called the epoch of irregularity (“époque de irrégularité” in
Leray [213]).

Theorem 2.29 (Leray [213], Scheffer [270]). Let u be a weak solution and
let T ∗ be an epoch of irregularity. Then the following properties hold:

1. ‖∇u(t)‖ → ∞ as t → T ∗ in such a way that,

∃C = C(Ω) > 0 : ‖∇u(t)‖ ≤ C

Re3/4(T ∗ − t)
, ∀ t < T ∗;

2. the 1/2-dimensional Hausdorff dimension of the set of (possible) epochs
of irregularity is equal to zero.

The above theorem gives an explicit lower bound on the growth of the H1
0,σ

norm of the solution, near a singularity. Furthermore, it shows that the set
of possible singularities lives in a small fractal set. We refer the reader to
the cited references for the definition of Hausdorff measure, the proof of the
theorem, and further comments.
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The Leray Approach

We noted that the Galerkin procedure that we sketched is not the one used by
Leray in the 1934 paper. In particular, Leray followed a completely different
approach, that, to some extent, can be considered the first LES model. See the
recent papers by Guermond, Oden, and Prudhomme [145] and by Cheskidov
et al. [59].

First, we recommend any reader interested in the mathematics of NSE to
read [213], since it can be considered one of the milestones in the history of
mathematics, but at the same time is fully understandable.

The idea of Leray is to approximate the NSE with a family of linear trans-
port problems and then to pass to the limit. Let us see with some details at
least how the procedure starts.

To approximate nonsmooth functions with smooth ones there is a filtering
technique that is very often used: convolution with smooth functions. Since
in Chap. 3 we will use it extensively to derive LES models, we start with
a definition and some preliminary results.

Proposition 2.30 (Basic property of convolution). Let f ∈ L1(�d) and
g ∈ Lp(�d), for 1 ≤ p ≤ ∞. Then, the convolution f ∗ g

(f ∗ g)(x) :=
∫
�d

f(x − y) g(y) dy,

is well-defined since almost everywhere (with respect to the Lebesgue measure
in �d) the function x �→ f(x − y) g(y) belongs to L1(�d). Furthermore, the
following estimates holds:

‖f ∗ g‖Lp(�d) ≤ ‖f‖L1(�d)‖g‖Lp(�d).

Definition 2.31. [Friederichs mollifiers] A sequence of mollifiers {ρn}n≥1 is
any sequence of real functions defined on �d such that:

ρn ∈ C∞
0 (�d), supp ρn ⊂ B(0, 1/n) := {x ∈ �d : |x| < 1/n},

∫
�d

ρn(x) dx = 1, and ρn(x) ≥ 0 ∀x ∈ �d.

The classical example is obtained by starting with function

ρ(x) =

⎧⎨⎩ e 1/(|x|2−1) if |x| < 1

0 if |x| ≥ 1,

and by defining

ρn(x) :=
1∫

�d ρ(x) dx
ndρ(nx) ∀�.
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We recall without proof the following results; see for instance Brezis [45],
Chap. 4.

Proposition 2.32. (i) Let f ∈ C(�d). Then, (ρn ∗ f) n→∞−→ f, uniformly on
compact subsets of �d;
(ii) Let f ∈ L1

loc(�
d). Then, ρn ∗ f ∈ C∞(�d) and

Dα(ρn ∗ f) = (Dαρn) ∗ f,

where α = (α1, . . . , αd) is a multi-index and

Dαφ =
∂α1 . . . ∂αdφ

∂xα1
1 . . . ∂xαd

1

∀φ ∈ C∞(�d);

(iii) Let f ∈ Lp(�d) for 1 ≤ p < ∞. Then (ρn ∗ f) n→∞−→ f in Lp(�d).

The system studied by Leray to approximate the NSE is the following:

vt − 1
Re

∆v + vn · ∇v + ∇p = f in �3 × (0, T ) (2.32)

∇ · v = 0 in �3 × (0, T ) (2.33)
vn = ρn ∗ v in �3 × (0, T ). (2.34)

The regularization consists in the fact that the transport is not realized by the
velocity itself (as in the Euler equations and NSE) but by a spatial mean of
the velocity on a region of diameter 2/n cfr. with the Leray α-model studied
in [59, 145].

The existence theory for (2.32)–(2.34) is based on the fact that vn is still
a divergence-free vector (check it) and consequently∫

�d

vn · ∇vv dx = 0.

In this way it is possible to obtain again, energy equality (for smooth solu-
tions). The idea is then to prove the existence of smooth solutions, for arbi-
trary positive times, by keeping n fixed. Then, to use the energy equality to
pass to the limit as n → ∞ to show convergence (on some sequence) of the
solutions v of the approximate problem, toward a solution of the NSE. The
convergence

v → u, as n → ∞
takes place in weak spaces and the result is that the very smooth family v
converges just to a weak solution u, that satisfies the properties stated in
Definition 2.11.

In [213] Leray proves existence, smoothness, and the a priori estimates for
the solution of (2.32)–(2.34) (with fixed n) by using the technique of Green
functions, more precisely, the fundamental solution of the heat equation in
�

3. The basic property of the smoothed transport theorem is that

‖ρn ∗ v‖L∞(�d) ≤ ‖v‖L∞(�d), (2.35)
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and this allows one to obtain the desired smoothness of the solution. We refer
the reader to Leray and also to Gallavotti [124] for other explanations.

Remark 2.33. The core of the proof of the result of Leray is the energy inequal-
ity, since it is the fundamental tool to pass to the limit as n → ∞. Again,
even with a completely different proof, we can see how this estimate is the
“fundamental ingredient” in the mathematical theory of NSE.

Remark 2.34. Since uniqueness of weak solutions is still an open problem, the
Hopf procedure and the Leray procedure may lead to different weak solutions!

2.5 Some Remarks on the Euler Equations

Together with the existence problems, there are several outstanding, open
questions related to the mathematical theory of fluid mechanics. Among oth-
ers, we may cite the problem of the long-time behavior of solutions, the sta-
bility questions (that are also connected with the numerical approximation),
and the vanishing viscosity limits.

Regarding the latter point, the fundamental question is: “do the solutions
to the NSE converge to those of the Euler equations as Re → ∞?”

The Euler equations for incompressible ideal fluids can be written as

ut + u · ∇u + ∇p = f in Ω × (0, T ) (2.36)
∇ · u = 0 in Ω × (0, T ) (2.37)

u(x, 0) = u0 in Ω. (2.38)

Now the boundary conditions are not the same as for the NSE, since the prob-
lem involves only space derivatives of the first order. The natural condition
is then

u · n = 0 on ∂Ω × [0, T ]. (2.39)

This fact is very important since this difference of boundary conditions, con-
tributes to make the limit

NSE → Euler as Re → ∞
a strongly singular limit.

Concerning the mathematical theory of the Euler equations, the situation
is very similar to that of the NSE. In fact, in the 2D case we know global
existence and uniqueness of smooth solutions. In the 3D case, the one that is
really interesting from the physical point of view, it is possible to prove just
local existence and uniqueness of smooth solutions.

The mathematical theory of the Euler equations is more difficult (with
respect to the NSE) because there is no smoothing term (the Laplacian) and
the nature of the equation is hyperbolic instead of parabolic. We briefly sketch
some results for the Euler equations and we refer to the bibliography for proofs
and for more details.
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Theorem 2.35. Let Ω be a domain such that Ω = �
3 or Ω is smooth

and bounded. Let u0 ∈ [H3(Ω)]3 with ∇ · u0 = 0 and u0 · n = 0 on
∂Ω. Let also f ∈ L1(0, T ; [H3(Ω)]3). Then, there exists a strictly positive
T0 = T0(‖u0‖H3 , ‖f‖L1(0,T ;H3)) ≤ T such that there exists a unique solution
to the Euler equations (2.36)–(2.39) in the time interval [0, T0). This solution
satisfies

u(x, t) ∈ C(0, T0; H3) ∩ C1(0, T0; H2) ∩ C2(0, T0; H1) ∩ C3(0, T0; L2).

In the above theorem Hk(Ω) denotes the space of functions with distributional
derivatives up to the k-order in L2 (see page 10), while the symbol Ck(0, T ; X)
denotes the space of Ck functions on (0, T ) with values in X.

Remark 2.36. Functions belonging to the space H3 may be identified with
smooth functions, say C0,1/2-Hölder continuous functions, see Adams [4]. This
shows that the above solutions of the Euler equations are indeed classical
solutions.

To give the flavor of the proof, and to understand where the limitation of small
times comes from, we write the a priori estimate that can be established for
the Faedo–Galerkin approximate functions. In this case we need a different
basis, since we have to deal with function Wk that are eigenfunctions of the
Stokes operator, subject to the boundary condition Wk · n = 0. By apply-
ing the differential operator Dα, for |α| ≤ 3, to (2.36) and by multiplying
by Dαum with suitable integration by parts it is possible to show that (see
Temam [294], but proofs using other methods are known, see the references
at the end of the section)

1
2

d

dt
‖um‖2

H3 ≤ C
(‖um‖3

H3 + ‖f‖H3‖um‖H3

)
. (2.40)

Consequently, ‖um‖H3 ≤ Y, where Y (t) satisfies the differential inequality⎧⎪⎨⎪⎩
Y ′(t) = C

[
Y (t)2 + ‖f‖H3

]
Y (0) = Y0 = ‖u0‖H3 ,

whose life-span may be bounded from below by an expression depending on
C, ‖u0‖H3 , and ‖f‖L1(0,T ;H3).

In the case Ω = �3 it is also possible to prove that in the time interval6

(0, T0) the unique smooth solution of the NSE, uRe, converges to those of the
Euler equation u∞ (if the initial data and the external force are the same) in
such a way that
6 Note that in this time interval unique smooth solutions for both the NSE and the

Euler equations do exist. Furthermore, the time T0 is independent of Re. In this
way we have a common time-interval in which we can study both problems, see
Kato [180].
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uRe → u∞ in H2

uRe ⇀ u∞ in H3

}
uniformly in t, as Re → ∞.

In the presence of boundaries the situation is much more complicated, due also
to the fact that we do not know the existence of reasonably weak solutions to
the Euler equations. In the case of weak solutions uRe to the NSE Kato [181]
proved that

uRe → u∞ in L2(Ω), uniformly in t ∈ [0, T ′], as Re → ∞,

if and only if

1
Re

∫ T ′

0

‖∇uRe(τ)‖L2(ΩRe) dτ → 0, as Re → ∞,

where ΩRe is a boundary strip of width 1/Re.
In the case of 2D fluids Theorem 2.35 may be improved to show that there

is no restriction on the life span of smooth solutions. The fact that given
u0 ∈ [H3(Ω)]2 then there exists a unique smooth solution for all positive
times comes from an accurate study of the equation of the vorticity. In fact
in the 2D case, if we take the curl of the equation (2.36) we may derive the
equation satisfied by the scalar ω = ∇× u := ∂1u

2 − ∂2u
1:

ωt + u · ∇ω = ∇× f in �2 × (0, T ).

In this case (suppose that f vanishes for simplicity) the vorticity is simply
transported by the flow. So if the vorticity is bounded at time t = 0, then it
follows the following estimate

‖ω(t)‖L∞ ≤ ‖ω0‖L∞ ∀ t ≥ 0.

This fact, together with the Biot–Savart law that allows one to write the
velocity in terms of the vorticity, is the main tool used to construct global in
time smooth solutions for the 2D Euler equations.

This argument fails in the three-dimensional case, since the dynamical
equation for the vector ∇× u = ω is now

ωt + u · ∇ω = ω · ∇u + ∇× f in �3 × (0, T ).

The term ω·∇u on the right-hand side is responsible for an increase of vorticity
and also for changes of its direction: vorticity is no longer simply transported
by the velocity field. This causes the lack of global estimates needed to prove
existence of smooth solutions for all positive times! The results cited in this
section have been proved by, among others, Lichtenstein [218], Wolibner [317],
Yudovich [318], Kato [179], Ebin and Marsden [103], and Bourguignon and
Brezis [42]. See also the review in Marchioro and Pulvirenti [230].
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2.6 The Stochastic Navier–Stokes Equations

Among other mathematical methods used to describe the chaotic behavior of
turbulent fluids there is also the stochastic approach. In this section we briefly
introduce the stochastic Navier–Stokes equations (SNSE):

ut + (u · ∇)u − 1
Re

∆u + ∇p = f + Gt in Ω × (0, T ) (2.41)

∇ · u = 0 in Ω × [0, T ] (2.42)
u = 0 on ∂Ω × (0, T ) (2.43)

u(x, 0) = u0(x) in Ω. (2.44)

The body forces are split into two terms: f is a classical term, and may repre-
sent a slowly (differentiable) varying force, while Gt correspond to fast fluc-
tuations of the force. It is possible to make different assumptions to describe
rapid fluctuations. We assume that G is continuous, but not differentiable.
Another possible choice is to take generalized stochastic processes, but we shall
not enter into details; overview on stochastic partial differential equations can
be found in Da Prato and Zabczyk [81, 82].

The introduction of the SNSE is reasonable since the nonlinear nature
of the equation leads naturally to the study of chaotic dynamical systems
(see Wiggins [314]). A heuristic justification of the study of SNSE can be the
following, see Chorin [63]:

. . . we shall now consider random fields u(x, ω) which, for each ω
(i.e., for each experiment that produces them), satisfy the NSE. u de-
pends also on the time t; we shall usually not exhibit this dependence
explicitly.
There is an interesting question of principle that must be briefly dis-
cussed: why does it make sense to view solutions of the deterministic
NSE as being random? It is an experimental fact that the flow one ob-
tains in the laboratory at a given time is a function of the experiment.
The reason must be that the flow described by the NSE for large Re
is chaotic; microscopic perturbations, even at a molecular scale, are
amplified to macroscopic scales; no two experiments are truly identical
and what one gets is a function of the experiment. The applicability of
our constructions is plausible even if we do not know how to formalize
the underlying probability space.

Another justification is given by Barenblatt [15] by considering the solution
of the NSE at high Reynolds number as a realization of a turbulent flow:

. . .the flow properties for supercritical values of the Reynolds number
undergo sharp and disorderly variations in space and in time, and
the fields of flow properties, – pressure, velocity etc. – can to a good
approximation be considered random. Such a regime of flow is called
turbulent. . .
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and extensive overview on the statistical study of NSE can be found in Monin
and Yaglom [241] and in Vǐsik and Fursikov [305].

We show how it is possible to define the concept of weak solutions for the
SNSE, together with an existence proof.

We assume that u0 ∈ L2
σ and that f ∈ L2(0, T ; (H1

0,σ)′). Furthermore, we
assume that

G ∈ C([0, T ]; H1
0,σ) and G(0) = 0.

The equation (2.41) can have meaning only in an integral sense. To construct
a weak solution, we project the SNSE onto the space spanned by the first
m eigenvectors of the Stokes operator and we consider the following integral
system in Vm := Pm(L2

σ):

um(t) − 1
Re

∫ t

0

Pm∆um(s) ds +
∫ t

0

Pm(um(s) · ∇um(s)) ds = Pm u0

+
∫ t

0

Pm f(s) ds + Pm G(t), t ≥ 0,

which has a unique maximal solution um ∈ C(0, T ; Vm). Next, we define
vm := um − Pm G ∈ C(0, T ; Vm), that satisfies

vm(t) −
∫ t

0

Pm∆vm(s) ds

+
1

Re

∫ t

0

Pm [(vm(s) + Pm G(s)) · ∇(vm(s) + Pm G(s))] ds

= Pm(u0 − G(0)) +
∫ t

0

Pm f(s) ds − 1
Re

∫ t

0

Pm∆G(s) ds.

We can use the “energy method” (multiply by um and perform suitable inte-
gration by parts) to obtain

1
2

d

dt
‖vm‖2 +

1
Re

‖∇vm‖2 ≤
∣∣∣∣∫

Ω

(vm + Pm G) · ∇PmG vm dx
∣∣∣∣

+‖∇vm‖‖f‖(H1
0,σ)′ +

1
Re

‖∇vm‖ ‖∇G‖.

By using the usual Hölder inequality (2.26) and Proposition 2.16 one can show
that

1
2

d

dt
‖vm‖2 +

1
2Re

‖∇vm‖2 ≤C

(
‖vm‖2‖Pm G‖8

L4(D)

+ ‖Pm G‖4
L4(D) + ‖∇G‖2 + 2‖f‖(H1

0,σ)′

)
.
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From the last equation, if some estimate on Pm G is given, we can extract (as
in the deterministic case) subsequences vmk

that converge to some v, which
satisfies ∀ t ≥ t0 ≥ 0 and ∀φ ∈ H1

0,σ:

〈v(t) − v(t0), φ〉 +
∫ t

t0

〈∇v(s),∇φ〉 ds

+
∫ t

t0

〈(v(s) + G(s)) · ∇(v(s) + G(s)), φ〉 ds

=
∫ t

t0

〈f(s), φ〉 ds +
∫ t

t0

〈∇G(s),∇φ〉 ds,

where 〈 . , . 〉 denotes the duality paring between H1
0,σ and its dual space. Now

by recalling that, for m ∈ �, we defined vm := um − Pm G, we can state the
following theorem, with u := v + G.

Theorem 2.37. Let f ∈ L2(0, T ; (H1
0,σ)′), G ∈ C([0, T ]; H1

0,σ), and u0 ∈
L2

σ. Then, there exists a weak solution to the SNSE (2.41), i.e. a function u
belonging to L∞(0, T ; L2

σ) ∩ L2(0, T ; H1
0,σ), which satisfies the regularity pro-

perty

if d = 3 then
d

dt
(u − G) ∈ L4/3(0, T ; (H1

0,σ)′)

if d = 2 then
d

dt
(u − G) ∈ L2(0, T ; (H1

0,σ)′)

and such that
(1): ∀ t ≥ t0 ≥ 0 and ∀φ ∈ H1

0,σ

〈u(t) − u(t0), φ〉 +
∫ t

t0

〈∇u(s),∇φ〉 ds +
∫ t

t0

〈u(s) · ∇u(s)), φ〉 ds

= 〈G(t) − G(t0), φ〉 +
∫ t

t0

〈f(s), φ〉 ds;

(2) for almost all t and t0, with t ≥ t0 ≥ 0 it holds

‖u(t) − G(t)‖2 ≤ e
∫ t

t0
(−λ1+C‖G(s)‖8

L4) ds‖u(t0) − G(t0)‖2

+
∫ t

t0

e
∫

t
σ

(−λ1+C‖G(s)‖8
L4) ds

× C
[
‖G(σ)‖4

L4 + ‖∆G(σ)‖2
(H1

0,σ)′ + ‖f(σ)‖2
(H1

0,σ)′

]
dσ;
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(3) for almost all t and t0, with t ≥ t0 ≥ 0 it holds

‖u(t) − G(t)‖2 +
∫ t

t0

‖u(s) − G(s)‖2 ds ≤ ‖u(t0) − G(t0)‖2

+ C

∫ t

t0

[
‖u(σ) − G(σ)‖2‖G(σ)‖8

L4 + 4‖G(σ)‖4
L4

+ 4‖∆G(σ)‖2
(H1

0,σ)′ + 4‖f(σ)‖2
(H1

0,σ)′

]
dσ.

This is the first result in the study of the SNSE, see Bensoussan and
Temam [24]. This shows how it is possible to make sense of the NSE with
a non-smooth forcing term. The further, very technical step is to study the
probabilistic properties of the solution that may considered as

u = u(x, t,G)

with the last argument being a random variable. This can be considered as
a starting point in the program explained in [63]. Further results can be found
in the references cited in this section. Furthermore, in the 2D case it is possible
to prove uniqueness of this class of solutions, the existence of suitable random
attractors, and that an ergodic theorem holds.

2.7 Conclusions

We started this chapter by presenting a (nonrigorous) derivation of the equa-
tions for fluid flows and by showing some connections with the K41 theory.
Then, we summarized the main available mathematical results regarding ex-
istence, uniqueness, and regularity for solutions of the equations for viscous
and ideal fluids. We also briefly recalled some results on the SNSE that the
reader will find helpful in connection with turbulence modeling.

The results in this chapter should be useful in understanding what could
be reasonable to try proving, what can be done rigorously, and where the
mathematical theory reaches its limits. We also hope that this chapter will
give the LES practitioners at least a flavor of the mathematical analysis of
fluid flows.
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3

Introduction to Eddy Viscosity Models

3.1 Introduction

Since the basic problem in LES is to predict u, in cases where predicting u
accurately is not possible, it is natural to begin by deriving equations for u.
The problem of filtering on a bounded domain is very important, but we
will postpone it until Chap. 9. Thus, we begin with the NSE without bound-
aries, i.e. either the Cauchy problem or (our choice) with periodic bound-
ary conditions defined by (2.3). For d = 2 or 3 and Ω = (0, L)d, we seek
a velocity u : Ω × [0, T ] → �

d and a pressure p : Ω × (0, T ] → � satis-
fying

ut + ∇ · (uuT ) − 1
Re

∆u + ∇p = f in Ω × (0, T ), (3.1)

∇ · u = 0 in Ω × (0, T ), (3.2)

subject to the initial conditions u(x, 0) = u0(x).
Note that we have written the nonlinear term in a way that is different

from the standard one we used in Chap. 2. We use the above expression for
the NSE since it will turn that this formulation is more useful in the study
of LES models. The two formulations are clearly equivalent in the case of
divergence-free functions, since we have the following equality:

[∇ · (uuT )]i :=
d∑

j=1

∂uiuj

∂xj
=

d∑
j=1

∂ui

∂xj
uj = [u · ∇u]i for i = 1, . . . , d.

To derive the space-filtered NSE, we convolve the NSE with the chosen filter
function gδ(x) (operationally, consider the NSE as a function of x′ ∈ Ω,
multiply (3.1) by gδ(x − x′) and then integrate over Ω with respect to x′,
recall Sect. 1.2). Using the fact that (for constant δ > 0 and in the absence
of boundaries) filtering commutes with differentiation, gives the system, often
called the space-filtered Navier–Stokes equations (SFNSE):
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ut + ∇ · (uuT ) − 1
Re

∆u + ∇p = f in Ω × (0, T ), (3.3)

∇ · u = 0 in Ω × (0, T ). (3.4)

This system is not closed, since it involves both u and u; it is usual to rewrite
it in a way that focuses attention on the closure problem. Define the tensor
τ = τ (u,u) by

τ (u,u) = uuT − uuT or τ ij(u,u) = ui uj − ui uj . (3.5)

This tensor τ (u,u) is often called the subgrid-scale stress tensor, subfilter-
scale stress tensor, or the Reynolds stress tensor. There is disagreement about
the latter so it is safest to call it the subgrid-scale or subfilter-scale stress
tensor. In the sequel, we will use the latter. Following Leonard [212], terms
in the subfilter-scale tensor are generally grouped in the so called triple de-
composition (see Chap. 3 in [267]) in which there is the cross-stress tensor C,
the Leonard stress tensor L, and the proper Reynolds stress tensor R defined
respectively by

C := u(u − u)T + (u − u)uT

L := uuT − uuT

R := (u − u)(u − u)T .

Then, (3.3) and (3.4) can be rewritten as

ut + ∇ · (uuT ) − 1
Re

∆u + ∇ · τ (u,u) + ∇p = f in Ω × (0, T ), (3.6)

∇ · u = 0 in Ω × (0, T ), (3.7)

and the problem is now to write the subfilter-scale stress tensor τ in terms of
filtered variables.

Definition 3.1. The interior closure problem in LES is to specify a tensor
S = S(u,u) to replace τ (u,u) in equation (3.6).

There are many proposals for “solving” the closure problem. The workhorse of
LES is still, however, the eddy viscosity (EV) model. EV models are motivated
by the idea that the global effect of the subfilter-scale stress tensor τ (u,u),
in the mean, is to transfer energy from resolved to unresolved scales through
inertial interactions. With this phenomenology in mind, we now consider eddy
viscosity models in LES.

3.2 Eddy Viscosity Models

The first closure problem of LES is thus to find a tensor S(u,u) approximating
τ (u,u) or at least approximating its effects in the SFNSE. To do this, it is use-
ful to have some understanding of the effects of those turbulent fluctuations.
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EV models are motivated by the following observed experimental behavior
(paraphrased from Frisch [117] who cites it as one of the two experimental
laws of turbulence):

Suppose, in an experiment, all control parameters are kept fixed except
the viscosity is reduced as far as possible and the energy dissipation
is measured (typically by measuring drag). While the flow is laminar,
then energy dissipation is reduced proportional to the reduction in ν.
When the flow is turbulent, the energy dissipation does not vanish as
ν → 0 but approaches a finite, positive limit.

This experimental law is part of Kolmogorov’s (K-41) theory, whose essen-
tial aspects were presented in Sect. 2.4.3. We will not present here the de-
tails of Kolmogorov’s theory (the interested reader is referred to the exquisite
presentations in Frisch [117] – Chaps. 6 and 7, Pope [258] – Chap. 6, and
Sagaut [267]). Instead, we will briefly sketch the idea of energy cascade, intro-
duced by Richardson in 1922 [263].

Fig. 3.1. Schematic of the energy cascade

The essence of the energy cascade is that kinetic energy enters the turbu-
lent flow at the largest scales of motion, and is then transferred (by inviscid
processes) to smaller and smaller scales, until is eventually dissipated through
viscous effects. A schematic of the energy cascade is presented in Fig. 3.1. As
explained in Sect. 2.4.3, the energy cascade has a suggestive illustration in the
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wavenumber space. The quantity plotted in Fig. 3.1 is the energy spectrum
E(k), from which one can obtain the energy contained in the wavenumber
range (k1, k2) through

k(k1,k2) =
∫ k2

k1

E(k)dk. (3.8)

For more details on the energy spectrum E(k) and its rigorous mathematical
definition, the reader is referred to the thorough presentations in Pope [258]
(Sects 3.7, 6.1, and 6.5) and Frisch [117] (Sect. 4.5).

Figure 3.1 contains the log–log plot of the energy spectrum E(k) against
the wavenumber k, and illustrates the energy cascade: εI represents the en-
ergy that enters the flow at the largest scales (smallest wavenumbers), εFS

represents the energy transferred to smaller and smaller scales (larger and
larger wavenumbers), and ε is the energy eventually dissipated through vis-
cous effects at the smallest scales (largest wavenumbers).

Thus, the action of the subfilter-scale stress τ is thought of as having
a dissipative effect on the mean flow: the action of the scales uncaptured on
the numerical mesh (above the cut-off wavenumber kc) on the large scales
(below the cut-off wavenumber kc) should replicate the effect of εFS , the so-
called forward-scatter.

Boussinesq Hypothesis

In 1877, Boussinesq [43] first formulated the EV/Boussinesq hypothesis based
upon an analogy between the interaction of small eddies and the perfectly
elastic collision of molecules (e.g. molecular viscosity or heat), stating:

“Turbulent fluctuations are dissipative in the mean.”

The mathematical realization is the model

∇ · τ (u,u) ≈ −∇ · (νT∇su) + terms incorporated into p,

where νT ≥ 0 is the “turbulent viscosity coefficient.”
This yields the simple model for the divergence-free w ∼= u:

wt+∇ · (wwT ) −∇ ·
([

2
Re

+ νT

]
∇sw

)
+ ∇q = f in Ω × (0, T ), (3.9)

∇ · w = 0 in Ω × (0, T ). (3.10)

The modeling problem then reduces to determining one parameter: the tur-
bulent viscosity coefficient νT :

Closure Problem: Find νT = νT (u, δ).

EV models are very appealing, since the global energy balance is very
simple and clear.
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Proposition 3.2. Let (w, q) be a classical solution to (3.9) and (3.10) subject
to either periodic or no-slip boundary conditions. Let νT = νT (w, δ) > 0.
Then,

k(t) + |Ω|
∫ t

0

εmodel(τ) dτ = k(0) +
∫ t

0

P (τ) dτ,

where k(t) =
1
2

∫
Ω

|w|2(t) dx, P (t) :=
∫

Ω

f · w dx and

εmodel =
1
|Ω|

∫
Ω

[
2

Re
+ νT (w, δ)

]
∇sw : ∇sw dx.

Proof. This property is obtained simply by multiplying the equations by w
and integrating by parts over Ω. ��
The most common EV model is known in LES as the Smagorinsky model in
which

νT = νSmag(w, δ) := (CSδ)2|∇sw|.
The term −∇ · ((CSδ)2|∇sw|∇sw) was studied in 1950 by von Neumann
and Richtmyer [306] as a nonlinear artificial viscosity in gas dynamics and
by Smagorinsky [277] in 1963 for geophysical flow calculations. A complete
mathematical theory for PDEs involving this term was constructed around
1964 by Ladyžhenskaya (see [195, 196]), who considered that term as a cor-
rection term for the linear stress–strain relation, for flows with larger stresses.
For further mathematical and numerical development of the model we refer
to the work of Du and Gunzburger [94, 95], Parés [249, 250], Layton [201],
and John and Layton [177].

The modeling difficulty now shifts to determining the non negative con-
stant CS . The first major result in LES is due to Lilly [219], who showed
(under a number of optimistic assumptions) that CS has a simple, universal
value 0.17 and is not a “tuning” constant.

Lilly’s Estimation of CS

The idea of Lilly is to equate 〈ε〉 = 〈εmodel〉 and from this to determine
a value for CS . This approach is very natural: if the model is to give the
correct statistics, according to the K-41 theory, it must exactly replicate 〈ε〉.
To explain this idea, we follow closely the presentation of Hughes, Mazzei,
and Jansen [160].

Ignoring the viscous dissipation in εmodel (and suppressing the time aver-
aging of each term in each step) we can approximate

εmodel
∼=
∫

Ω

νSmag(w, δ)|∇sw|2 dx

=
∫

Ω

(CSδ)2|∇sw|3 dx = (CSδ)2‖∇sw‖3
L3 .
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If we assume that the time average of w is exactly the same as that of u,
restricted to the frequencies 0 ≤ |k| ≤ kc := π/δ, then Plancherel’s theorem
and the Kolmogorov relation E(k) ∼= α ε2/3k−5/3 give (in the time averaging
sense)

‖∇sw‖2 ∼= 2
∫ kc

0

k2E(k) dk ∼= 2
∫ kc

0

k2(αε2/3k−5/3) dk =
3
2

αε2/3k4/3
c .

If we assume that for homogeneous, isotropic turbulence, after time averaging,
‖∇sw‖3

L3
∼= ‖∇sw‖3, we can write

‖∇sw‖3
L3

∼=
(

3α

2

)3/2

ε k2
c ,

where α is the Kolmogorov constant. Then, we have the following expression
for εmodel:

εmodel
∼= (CSδ)

(
3α

2

)3/2

ε k2
c .

Since kc = π/δ, we finally1 have

εmodel
∼= C2

Sπ2

(
3
2

)3/2

α3/2ε.

Equating ε = εmodel, the dependence on ε in the equation cancels out giving

CS =
1
π

(
4
3

)3/4

α−3/4 ∼= 0.17, for α ∼= 1.6.

The universal value 0.17, independent of the particular flow, is obtained. This
is often expressed as

“Smagorinsky is consonant with Kolmogorov.”

Interestingly, this universal value CS = 0.17 has almost universally (in numer-
ical experiments) been found to be too large. There have been many other
criticisms of the Smagorinsky model associated with it being too dissipative.

1 The classical estimate of α is α = 1.4. More recent studies suggest α should be
a bit larger, around 1.6. Part of this variation might be due to normal experimental
errors and part might be because the K41 theory is an asymptotic theory at very
high Reynolds numbers, while experiments and calculations occur at high but
finite Re. In addition, the value CS = 0.17 is too large for almost all shear flows.
The reason is that the mean shear, which is not taken into account in the local
isotropy hypothesis that leads to the 0.17 value will be accounted for in the
evaluation of ∇su. Since the subgrid dissipation associated with the Smagorinsky
model is (CSδ2)‖∇su‖3

L3 , the overestimation in the resolved gradient must be
balanced by a decrease in the constant.
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Rather than summarizing them here, we present in Fig. 3.2 two simulations
from Sahin [269] of a 2D flow over an obstacle: one a DNS and the other
with the Smagorinsky model. In both simulations, slip-with-friction bound-
ary conditions were used, see p. 259. It is clear from these pictures that the
dissipation in this model is too powerful.

Fig. 3.2. Streamlines of a 2D flow over an obstacle (Re = 700, t = 40). True solution
(top) and Smagorinsky model (3.11) (bottom)

3.3 Variations on the Smagorinsky Model

The Smagorinsky Model

wt + ∇ · (wwT ) + ∇q −∇ ·
(

2
Re

∇sw + (CSδ)2|∇sw| ∇sw
)

= f (3.11)

∇ ·w = 0, (3.12)

where CS ≈ 0.17 seems to be a universal answer in LES. It is very easy
to implement, very stable, and (under “optimistic” assumptions) it well repli-
cates energy dissipation rates, according to the analysis of Lilly [219] reviewed
in the previous section. Unfortunately, it is also quite inaccurate for many
problems. Thus, there has been a lot of work testing modifications of (3.11)
which are easy to implement and more accurate. Usually “more accurate”
means the modifications are made to try to limit excessive amounts of extra
dissipation in (3.11). Thus, variations of the Smagorinsky model have been
derived not with the idea of increasing the accuracy of the approximation of
the subfilter-scale stress tensor (3.5), but rather of ameliorating the overly
diffused predictions of the model.
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3.3.1 Van Driest Damping

Near walls, boundary layers in w introduce large amounts of dissipation
in (3.11). This extra dissipation prevents the formation of eddies and can
eliminate any turbulence from beginning. The idea of van Driest [302] was to
reduce the Smagorinsky constant CS to 0 as the boundary is approached such
that averages of the flow variables satisfy the boundary layer theory (a loga-
rithmic law-of-the-wall). For more details on the physical insight behind the
van Driest damping, the reader is referred to the presentations in Pope [258]
and Sagaut [267]. The van Driest scaling reads

CS = CS(y) =
[
CS δ

(
1 − e −y+/A

)]2

, (3.13)

where CS = 0.17 is the Lilly–Smagorinsky constant and y+ is the non-
dimensional distance from the wall

y+ =
uτ (H − |y|)

ν
, (3.14)

which determines the relative importance of viscous and turbulent phenom-
ena. In (3.14), H is the channel half-width, uτ is the wall shear velocity (for
more details on the derivation and interpretation of uτ , the reader is referred
to Sect. 12.2.2), and A = 25 is the van Driest constant.

The van Driest scaling (3.13) improves the performance of the model in
predicting statistics of turbulent flow in simple geometries, where Boundary
Layer theory holds (e.g. flow past a flat plate and pipe flow). Numerical sim-
ulations for the Smagorinsky model (3.11) equipped with the van Driest scal-
ing (3.13) in turbulent channel flow simulations are presented in Sect. 12.2.
We will just mention here that without a scaling of the form CS(x) → 0 (such
as the van Driest damping (3.13)), numerical simulations with the Smagorin-
sky model (3.11) are generally reported to be very unstable with commonly
used time-stepping schemes.

With CS(x) → 0 as x → ∂Ω, most of the standard mathematical re-
sults, such as Körn’s inequality, the Poincaré–Friederichs inequality, and
Sobolev’s inequality, no longer hold. Thus, the mathematical development
of the Smagorinsky model under no-slip boundary conditions with van Dri-
est damping (3.13) is an important open problem. For recent mathematical
results in this direction, see Swierczewska [293].

3.3.2 Alternate Scalings

To start this section, think of a flow as composed of eddies of different sizes in
different places. If we are in a region of large eddies then the velocity changes
over an O(1) distance and the velocity deformation is O(1) as well. In a region
of smaller eddies the velocity changes over a distance of O(eddy length scale)
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so the local deformation is O(1/eddy length scale). Hence, the Smagorinsky
model (3.11) introduces a turbulent viscosity coefficient νT = (CSδ)2|∇sw|
with the relative magnitude:

νT =
{

O(δ2) in regions where |∇sw| = O(1),
O(δ) in the smallest resolved eddies wherein |∇sw| = O(δ−1).

Thus, it is most successful when used with second–order finite difference
methods for which it gives a perturbation of O(discretization error) in the
smooth/laminar flow regions. For higher order methods (say, order r) the
natural generalization is thus, see Layton [201],

νT = (CSδ)r |∇sw|r−1 =
{

O(δr) in smooth regions,
O(δ) in the smallest resolved eddies.

This scaling is motivated by experiments with central difference approxima-
tions to linear convection diffusion problems. Another scaling, again motivated
by the interface between models and higher order numerics, was proposed
in [201]. In three dimensions and using a numerical method of order O(hr)
accuracy, the natural choice is

νT = Cr,p | log(δ)|− 2
3 (p−1) δ

3
2 r− 3

2 |∇sw|p−2, with p ≥ 2
3
r + 1.

As p increases, these formulas concentrate the eddy viscosity more and more
in the regions in which the gradient is large. These regions include the smallest
resolved eddies and also regions with large shears.

A third rescaling follows directly from interpreting the turbulent viscosity
coefficient νT micro-locally in K-41 theory. In this theory, setting the estimate
of the smallest persistent eddy to equal δ, yields a scaling formula for the
turbulent viscosity coefficient (see [201]) as follows: consider,

νT = (Cr δ)r|∇sw|p−2.

In the smallest resolved eddy, w undergoes an O(1) change over a distance
O(δ). Thus, |∇sw| = O(δ−1) therein and νT = O(δr−p+2) in the smallest
resolved eddies.

Considering this to be the (effective local Reynolds number)−1, then the
K-41 theory predicts that the smallest persistent eddy is O(ν3/4

T ), in three
dimensions. Equating δ = ν

3/4
T , we get an equation

δ ≈ (δr−p+2)3/4.

Since r is fixed to be the order of the underlying numerical method, this
determines p via

1 =
3
4
(r − p + 2) or p = r − 2

3
.
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Thus, the K-41 theory suggests the higher order Smagorinsky-type model

νT = (Crδ)r |∇sw|r−4/3 ≈
{

O(δr) in smooth regions,
O(δ4/3) in the smallest resolved eddies.

In two dimensions, the appropriate modification, applying the theory of
Kraichnan [193], suggests that this should be modified to read

νT = (Crδ)r|∇sw|r−2.

Other improved EV methods will be discussed in Chap. 4.

3.3.3 Models Acting Only on the Smallest Resolved Scales

In Variational Multiscale Methods introduced by Hughes and his collabora-
tors [160, 161, 162], a model for the fluctuations u′ is derived and discretized.
In this work (see Chap. 11 for details), a Smagorinsky model acting only on
the fluctuations u′

−∇′ · ((CS δ)2 |∇su′| ∇su′)
has been used successfully in the numerical simulation of decay of homoge-
neous isotropic turbulence [161] and turbulent channel flows [162]. Further
developments were presented in Collis [68]. In Layton [203], an analogous idea
was discussed. In the model for w (which approximates u) a Smagorinsky
model acting only on the smallest scales of w was proposed. This model can
be written in a natural variational way (for smooth enough v and w) as:

(CS δ)2 (|∇s(w − w)| ∇s(w − w),∇s(v − v)).

These refinements are very promising in that they aim to improve the over-
damping of the large structures seen in Fig. 3.2. This will likely yield improve-
ments in turbulent flow simulations and great improvements in transitional
flow simulations.

3.3.4 Germano’s Dynamic Model

The “dynamic model” introduced by Germano et al. [129], is currently one of
the best performing models in LES. In this model, the Smagorinsky model’s
“constant” CS is chosen locally in space and time, so CS = CS(x, t), to make
the Smagorinsky model agree in a least squares sense as closely as possible
with the Bardina scale similarity model, which we will analyze in Chap. 8.

The mathematical development of the dynamic model is an open problem:
since it can produce turbulent viscosities that can change sign, it seems beyond
present mathematical tools.

Germano’s idea of dynamic parameter selection, see Germano et al. [129],
gives a big improvement in the performance of the Smagorinsky model. We will
not delve into dynamic models here for two reasons. First, dynamic parameter
selection is really a way to improve the performance of almost any model
(and is not specific to the Smagorinsky model). Second, its mathematical
foundation seems to be beyond the tools presently available.
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3.4 Mathematical Properties of the Smagorinsky Model

In the 1966 International Congress of Mathematicians (ICM), the Russian
mathematician O.A. Ladyžhenskaya described her work on three new mod-
els for fluids that are undergoing large stresses. One motivation for her work
was the famous gap in the theory of the NSE in three dimensions: strong
solutions are unique but the best efforts of mathematicians have not been
able to prove their global existence, while weak solutions were proved to ex-
ist in 1934 by Leray and yet their uniqueness has been similarly elusive, see
Chap. 2. Since this was the case for long time, large data, and small vis-
cosity coefficients, and since all three are connected with the physical phe-
nomenon of turbulence, it seemed (and still seems) possible that there might
be a breakdown in the physical model of the NSE. The breakdown point, if
any, seems to be the assumption of a linear stress–strain relation for larger
stresses.

The following assumptions were made by Ladyžhenskaya:

1. the viscous stress tensor σ depends only on the deformation tensor ∇sw;
2. the viscous stress tensor σ is invariant under rotation;
3. the viscous stress tensor σ is a smooth function of ∇sw and viscous forces

are dissipative, that is, its Taylor expansion is dominated by odd powers
of ∇sw;

4. the material is incompressible.

The simplest such case is when σ(∇sw) is an odd cubic polynomial in ∇sw
with

σ(∇sw) : ∇sw ≥ 0.

These assumptions lead immediately to the model (3.11), (3.12) also studied
by Smagorinsky.

If the conditions are slightly generalized, for example by dropping the
analyticity and still seeking the simplest interesting example, the model be-
comes

wt + ∇ · (w wT ) + ∇q −∇ ·
(

2
Re

∇sw + (CSδ)2|∇sw|r−2∇sw
)

= f , (3.15)

∇ · w = 0, (3.16)

with r ≥ 0, and from now on we will call it the Smagorinsky–Ladyžhenskaya
Model (SLM). For CSδ > 0, Ladyžhenskaya proved in [195, 196] existence of
weak solutions of (3.15) and (3.16) for any r ≥ 2, and uniqueness of weak
solutions in three dimensions for any r ≥ 5/2, including the case (3.11) and
(3.12). For fixed parameters, i.e. C2

Sδ2 is O(1), the theory of (3.11) and (3.15)
is quite complete. For example, uniqueness of weak solutions has been ex-
tended to r ≥ 12/5 [94, 95, 249, 250, 228]. The case when Re is fixed and
CSδ → 0, the interesting case for our purposes, is much murkier.
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Many of the basic functional analytic tools used in this mathemati-
cal work are fundamental also in the further development of eddy viscos-
ity models. We will therefore present the tools and show that they can
also be used to give a clearer understanding of the SLM (3.15) and (3.16)
itself.

Function Spaces

For this problem we need some spaces that are a little bit more sophisticated
than those required in the variational formulation of the NSE.

Definition 3.3. The Sobolev space W 1,p(Ω) is defined by

W 1,p(Ω) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ Lp(Ω) : ∃ gi ∈ Lp(Ω), i = 1, . . . , d such that

∫
Ω

u
∂φ

∂xi
dx = −

∫
Ω

gi φdx, ∀φ ∈ C∞
0 (Ω)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

In other words, W 1,p(Ω) denotes the subspace of functions belonging to
Lp(Ω), together with their first-order distributional derivatives. The space
W 1,p(Ω), for 1 ≤ p ≤ ∞, is a Banach space, endowed with the norm

‖u‖W 1,p(Ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
‖u‖p

Lp + ‖∇u‖p
Lp

]1/p

if 1 ≤ p < ∞,

max
{

sup
x∈Ω

|u|, sup
x∈Ω

|∇u|
}

if p = ∞,

and it is also reflexive and separable, provided 1 < p < ∞. As usual we can
define the space of functions vanishing on the boundary.

Definition 3.4. We say that W 1,p
0 (Ω) is the closure of C∞

0 (Ω) with respect
to the norm ‖ . ‖W 1,p .

The space W 1,p
0 (Ω) is the subspace of W 1,p(Ω) of functions vanishing on

the boundary. These functions vanish in the traces sense, i.e. in the sense of
W 1−1/p,p(∂Ω). We refer again to [4] for the introduction and properties of
fractional Sobolev spaces.

First, we note that the Poincaré inequality also holds in the Lp-setting:
Let Ω be a bounded subset of �d. Then, there exists a positive constant C
(depending now on Ω and p) such that

‖u‖Lp ≤ C‖∇u‖Lp, ∀u ∈ W 1,p
0 (Ω), with 1 ≤ p < ∞.

Consequently, ‖∇u‖Lp is a norm on W 1,p
0 (Ω) equivalent to ‖ . ‖W 1,p .

We will use a generalized version of the following lemma:
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Lemma 3.5. The semi-norm

|u|W 1,p
0

:= ‖∇su‖Lp , 1 < p < ∞

is equivalent to the norm of [W 1,p
0 (Ω)]d.

Proof. The proof of this lemma, is based on a generalization of a classical
tool in continuum mechanics : the Körn inequality. This inequality states that
if u ∈ [H1(Ω)]d and vanishes on a measurable (with nonvanishing measure)
portion of ∂Ω, then

∃CK > 0 :
∫

Ω

|∇su|2 dx ≥ CK‖∇u‖2.

The generalization of this inequality to Lp spaces can be found in Nečas [245].
Finally, Lemma 3.5 follows by using the standard Poincaré inequality, see (for
instance) Parés [249]. ��
We now define the basic function space of divergence-free vector fields that
we will need in the sequel

W 1,p
0,σ :=

{
u ∈ [W 1,p

0 (Ω)]d : ∇ · u = 0
}

,

endowed with the norm ‖ . ‖W 1,p
0

.

Remark 3.6. We develop the theory for the SLM model mainly for (3.11), that
is to say (3.15) with r = 3. We study this case since its analysis is the starting
point for deeper results. Next, we will give other results related with different
values of the parameter r and the reader can find complete details in the
references cited throughout this chapter.

We start by giving the definition of weak solutions for the Smagorinsky model.

Definition 3.7. A measurable function w : Ω×[0, T ] → �
d is a weak solution

to the SLM (3.11) if

1. w ∈ H1(0, T ; L2
σ) ∩ L3(0, T ; W 1,3

0,σ) with w(0) = w0, the latter space being
endowed with the norm

‖w‖H1(0,T ;L2
σ)∩L3(0,T ;W 1,3

0,σ ) = ‖∇sw‖L3(0,T ;L3(Ω)) + ‖wt‖H1(0,T ;L2
σ);

2. w satisfies (3.11) in the weak sense, i.e. for each φ ∈ C∞
0 (Ω× [0, T )) with

∇ · φ = 0, the following identity holds:∫ ∞

0

∫
Ω

[
wt φ +

1
Re

∇sw∇sφ + (CSδ)2|∇sw|∇sw∇sφ

+w · ∇w φ

]
dx dt =

∫ ∞

0

∫
Ω

f φ dx dt.

(3.17)
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Remark 3.8. In the above definition

H1(0, T ; L2
σ) :=

{
f ∈ L2(0, T ; L2

σ), with ft ∈ L2(0, T ; L2
σ)
}

,

where ft is the derivative in the sense of distributions, i.e. it is a function in
L2(0, T ; L2

σ) such that∫ T

0

∫
Ω

f v φt(t) dx dt = −
∫ T

0

∫
Ω

ft vφ(t) dx dt, ∀v ∈ L2
σ, ∀φ ∈ C∞

0 (0, T ).

This definition of weak solution is slightly different from the one regarding
the weak solutions for the NSE equations (Definition 2.11). In fact, since wt

belongs to L2(0, T ; L2
σ) it is not necessary to integrate by parts the term

involving the time derivative. Furthermore, it is well-known (see [4]) that
H1(0, T ; L2

σ) ⊂ C(0, T ; L2
σ) and the initial condition w(x, 0) = w0(x) is satis-

fied in the usual sense. This model, due to the presence of a stronger dissipative
term, has weak solutions that are much more regular than in the NSE case.

We now give the proof of the existence of weak solution with almost all the
needed details.

Theorem 3.9 (Ladyžhenskaya [195, 196]). Let Ω ⊂ �
3 be a bounded

open set and let be given w0 ∈ W 1,3
0,σ and f ∈ L2(0, T ; L2(Ω)). Then, the

SLM (3.11), (3.12) possesses at least a weak solution w.

Proof. The proof of existence is based on the Faedo–Galerkin procedure. We
start as in the proof of existence of weak solutions for the NSE (Sect. 2.4). In
fact, in this case, we obtain different a priori estimates for the approximate
functions

wm(x, t) =
m∑

k=1

gi
m(t)Wi(x),

where the functions Wi(x) form an orthonormal (with respect to (·, ·), the
usual L2-scalar product) “basis” of W 1,3

0,σ . In this case, we will not need to use
special functions (recall that in Theorem 2.14 we used a basis of eigenfunc-
tions) since, roughly speaking, we do not need to multiply the equations by
−P∆wm.

The function wm should satisfy, for each 1 ≤ k ≤ m, the following system
of ODE:

d

dt
(wm,Wk) +

2
Re

(∇swm,∇sWk)+(CSδ)2(|∇swm|∇swm,∇sWk)

+ (wm · ∇wm,Wk) = (f ,Wk).

(3.18)

The energy estimate. The first a priori estimate is obtained, as usual, by
using wm itself as test function, to get
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1
2

d

dt
‖wm(t)‖2 +

2
Re

‖∇swm(t)‖2 + (CSδ)2‖∇swm(t)‖3
L3 = (f ,wm). (3.19)

(For more details, the reader is referred to the derivation of (2.18).) With the
Gronwall lemma it is easy to show that (3.19) implies

sup
0≤t≤Tm

‖wm(t)‖ ≤ ‖wm(0)‖ +
∫ T

0

‖f(τ)‖ dτ. (3.20)

Again, the functions wm do exist in some time interval [0, Tm), since they
satisfy a system of ODE with a Lipschitz nonlinear term. Estimate (3.20)
together with a standard argument implies that Tm = T ; see also p. 49.

Now, integration with respect to time of (3.19) gives

1
2
‖wm(T )‖2 − 1

2
‖wm(0)‖2 +

2
Re

∫ T

0

‖∇swm(τ)‖2 dτ

+ (CSδ)2
∫ T

0

‖∇swm(τ)‖3
L3dτ ≤

∫ T

0

‖f(τ)‖ ‖wm(τ)‖ dτ.

By using the bound on ‖wm‖ from (3.20) and inserting it to increase the
right-hand side of the latter estimate, it is easy to show that

2
Re

∫ T

0

‖∇swm(τ)‖2 dτ + (CSδ)2
∫ T

0

‖∇swm(τ)‖3
L3 dτ

≤ ‖w(0)‖2 +
3
2

(∫ T

0

‖f(τ)‖ dτ

)2

.

(3.21)

Another a priori estimate. The second estimate is obtained by using as
test function ∂twm. In fact, in this case the first estimate is not enough to
prove existence of weak solutions. Multiplication by ∂twm has to be under-
stood as (a) multiplying (3.18) by dgk

m(t)/dt and (b) summing over k. This
shows that

‖∂twm‖2 +
d

dt

(
1

Re
‖∇swm‖2 +

(CSδ)2

3
‖∇swm‖3

L3

)

+
∫

Ω

wm · ∇wm ∂twm dx =
∫

Ω

f ∂twm dx.

(3.22)

In particular, note that this holds since

(i) 1
2

d
dt

∫
Ω
|∇sum|2dx =

∫
Ω
∇sum∂t∇sum dx =

∫
Ω
∇sum∂t∇um dx,

(ii) 1
3

d
dt

∫
Ω

|∇sum|3dx =
∫
Ω

|∇sum|∇sum∂t∇um dx,
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and the identities can easily be proved by recalling the following result of
linear algebra: let A and B be n × n matrices. If A is symmetric and if AB
denotes the inner product of the real matrices A and B, then

AB = A
(B + BT )

2
+ A

(B − BT )
2

= A
(B + BT )

2
,

since the inner product of a symmetric matrix and an anti-symmetric matrix
vanishes (recall that AB =

∑d
i,j=1 aijbij).

The convective term can be estimated (by using the Hölder inequality) as
follows ∣∣∣∣∫

Ω

wm · ∇wm ∂twm dx
∣∣∣∣ ≤ ‖∂twm‖ ‖∇wm‖L3‖wm‖L6 .

By using the Sobolev embedding H1(Ω) ⊂ L6(Ω), and the continuous em-
bedding of L3(Ω) into L2(Ω) (recall that Ω is bounded2), we get

‖g‖L6 ≤ c1‖∇g‖ ≤ c2‖∇g‖L3 ∀g ∈ [W 1,3
0 (Ω)]d.

Then, Lemma 3.5 and the Young inequality imply

∃ c = c(Ω) :
∣∣∣∣∫

Ω

wm · ∇wm∂twm dx
∣∣∣∣ ≤ 1

4
‖∂twm‖2 + c‖∇swm‖4

L3 .

The term involving the external force is estimated as follows:∣∣∣∣∫
Ω

f ∂twm dx
∣∣∣∣ ≤ ‖f‖2 +

1
4
‖∂twm‖2.

By using the above estimates and by integrating (3.22) with respect to the
time variable over [0, t] (for t ≤ T ), we get∫ t

0

‖∂twm(τ)‖2 dτ +
2

Re
‖∇swm(t)‖2 +

2(CSδ)2

3
‖∇swm(t)‖3

L3

≤ 2
Re

‖∇sw0‖2 +
2(CSδ)2

3
‖∇sw0‖3

L3 + 2
∫ T

0

‖f(τ)‖2dτ

+ 2c

∫ T

0

‖∇swm(τ)‖4
L3dτ.

2 This fact follows from an application of the Hölder inequality∫
|f |2 dx ≤

[(∫
|f |2

)3/2

dx

]2/3 [∫
1 dx

]1/3

= ‖f‖2
3|Ω|1/3,

where |Ω| denotes the measure of Ω. By taking the square root of both sides, we
finally get the desired inequality.
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An application of the Gronwall Lemma 2.17 with

f(t) =
2(CSδ)2

3
‖∇swm(t)‖3

L3 , g(t) = c
3

(CSδ)2
‖∇swm(t)‖L3

C =
2

Re
‖∇sw0‖2 +

2(CSδ)2

3
‖∇sw0‖3

L3 + 2
∫ T

0

‖f(τ)‖2dτ

shows that

sup
0≤t≤T

(CSδ)2

3
‖∇swm(t)‖3

L3 ≤ C e

3c

2(CSδ)2

∫ T

0

‖∇swm(τ)‖L3 dτ
.

By Hölder inequality, we get∫ T

0

‖∇swm(τ)‖L3 dτ ≤ ‖∇swm‖3
L3(0,T ;L3(Ω))T

2/3.

By using the a priori estimate (3.21) to bound the latter integral, we finally
get that there exists a positive constant C, depending on T, but independent
of m, such that∫ T

0

‖∂twm(τ)‖2dτ + sup
0≤t≤T

2(CSδ)2

3
‖∇sw(t)‖3

L3 ≤ C. (3.23)

Remark 3.10. The core of the proof relies again on some a priori estimates.
In this case we obtained the second estimate with a different tool, namely
multiplication by ∂twm. In the sequel we will see other, more sophisticated,
techniques that are required by LES models. We want to stress again the im-
portance of a priori estimates in variational problems of mathematical physics
and especially in fluid mechanics.

With the previous estimates, we have then proved that the sequence {wm}m≥1

is uniformly bounded in

H1
(
0, T ; L2

σ

) ∩ L∞
(
0, T ; W 1,3

0,σ

)
.

By using results of weak compactness (see footnote on p. 50) it is possible
to prove that there exists a subsequence, relabeled again as {wm}m≥1, and
a function w ∈ H1(0, T ; L2

σ) ∩ L∞(0, T ; W 1,3
0,σ) such that:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wm⇀w in H1(0, T ; L2
σ);

wm
∗
⇀ w in L∞(0, T ; W 1,3

0,σ);

∇wm ⇀ ∇w in L3(0, T ; L3(Ω)).

Since we know a bound on the time derivative, we can use a standard and
useful compactness tool; see, for instance, Lions [221], Chap. 1.
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Lemma 3.11 (Aubin–Lions). Let, for some p > 1, the set Y be bounded
in

X :=
{

u ∈ Lp(0, T ; X1) :
du

dt
∈ Lp(0, T ; X3)

}
.

If X1 ⊂ X2 ⊂ X3 are reflexive Banach spaces and the first inclusion is com-
pact, while the second one is continuous, then Y is compactly included in
Lp(0, T ; X2).

By recalling the bounds proven for wm and ∂twm, we get that the hypotheses
of the above lemma are satisfied with p = 2 and X1 = X3 = L2

σ. Then, the
sequence {wm}m≥1 belongs to a set that is compactly included in L2(0, T ; L2

σ)
and consequently we can extract a subsequence, relabeled again as {wm}m≥0,
such that

wm → w in L2(0, T ; L2
σ). (3.24)

Together with these properties, we also have another strong convergence prop-
erty, that is more powerful than (2.22) that we used in Chap. 2.

Lemma 3.12. The sequence {wm}m≥1 satisfies

wm → w in Lq(0, T ; Lq(Ω)), 1 ≤ q < 4.

Proof. The proof is based on the classical Ladyžhenskaya inequality (2.24)
(note that we can replace ∇ with ∇s in the second term, thanks to Lemma 3.5)

‖w‖L4 ≤ c ‖w‖1/4‖∇sw‖3/4.

By using the previously proved uniform bounds, wm is uniformly bounded in
L4(0, T ; L4(Ω)).

An application of the Hölder inequality shows, for q < 4, that

‖w − wm‖q
Lq(0,T ;Lq(Ω)) =

∫ T

0

∫
Ω

|w − wm|2−ε|w − wm||w − wm| dx dt

≤ ‖(w − wm)2−ε‖L2(0,T ;L2)‖w − wm‖2
L4(0,T ;L4).

The last term on the right-hand side is bounded, while the first one can be
written as

‖(w − wm)2−ε‖2
L2(0,T ;L2) =

∫ T

0

∫
Ω

|w − wm|2−2ε|w − wm||w − wm| dx dt,

and the final terms may be bounded as in the previous case.
After a finite number (k ∈ �) of steps, since the number ε > 0 is fixed, we

get an expression involving 0 < 2−kε ≤ 1. Then, by using the result of (3.24)
we finally get

‖(w − wm)2−kε‖2
L2(0,T ;L2) ≤ c‖w − wm‖2

L2(0,T ;L2)
m→∞−→ 0.

This proves the lemma. ��
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While all the other terms can be treated as in the study of the NSE (see
p. 50) it is necessary to have an auxiliary tool to analyze the conver-
gence∫ T

0

∫
Ω

|∇swm|∇swm∇sφ dx dt
?−→

∫ T

0

∫
Ω

|∇sw|∇sw∇sφ dx dt.

In this case, we introduce the so called “Minty-trick” that is a very
powerful tool to study monotone operators, see Minty [237] and Brow-
der [46].

Remark 3.13. Historical remarks on the theory of monotone operators may
be found in the introduction to Chap. 26 in Zeidler [320], where many au-
thors are named as fundamental contributors to this field. Among them, we
may cite Golomb (1935), Zarantonello (1960), Vainberg (1956), Kačurovskii
(1960), and Leray and J.-L. Lions (1965). The folklore comment in [320] is:
“The truly new ideas are extremely rare in mathematics”!

First we note that, uniformly in m,

2
Re

∇swm + (CSδ)2|∇swm|∇swm is bounded in L3/2(0, T ; L3/2(Ω))

and consequently there exists B ∈ L3/2(0, T ; L3/2(Ω)) such that

2
Re

∇swm + (CSδ)2|∇swm|∇swm ⇀ B in L3/2(0, T ; L3/2(Ω)).

This finally shows that∫ ∞

0

∫
Ω

[wt φ + B∇sφ + w · ∇w φ] dx dt =
∫ ∞

0

∫
Ω

f φ dx dt. (3.25)

We have proved this equality for smooth functions φ written as φ=
∑m

k=1 βk(t)
Wk(x), with βk absolutely continuous functions. By a density argument (see
Ladyžhenskaya [197], p. 159) it is possible to show that:

identity (3.25) holds also for φ ∈ H1(0, T ; L2
σ) ∩ L3(0, T ; W 1,3

0,σ).

Remark 3.14. This property is both nontrivial and crucial since we really need
it to use w itself as a test function. Identity (3.25) involves w and not sim-
ply the approximate functions wm. As we have seen before, multiplying the
equation satisfied by w by the solution itself may involve calculations that are
formal and not justified.

To better explain the monotonicity argument, we collect it into a lemma, from
which it is possible to deduce that wm converges to a solution to SLM (3.11),
(3.12).
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Lemma 3.15. Let ψ ∈ H1
(
0, T ; L2

σ

) ∩ L3
(
0, T ; W 1,3

0,σ

)
. Then

−
∫ T

0

∫
Ω

(wt + w · ∇w − f)(w − ψ) dx dt

−
∫ T

0

∫
Ω

(
2

Re
∇sψ + (CSδ)2|∇sψ|∇sψ

)
(∇sw −∇sψ) dx dt ≥ 0.

(3.26)

Proof. In this lemma we will use the operator

T (v) =
2

Re
∇sv + (CSδ)2|∇sv|∇sv, (3.27)

defined for a smooth enough vector field v. We will use this notation to focus
on the properties of the subfilter-scale term and also to stress other abstract
properties.

First, note that by (3.18) w = wm satisfies (3.25) with B = T (wm). We
then subtract the identity (3.25) for wm, with test function φ = wm, from
the same identity with test function φ = ψ, to obtain∫ T

0

∫
Ω

(∂twm + wm · ∇wm − f ,wm − ψ) dx dt

+
∫ T

0

∫
Ω

T (wm)(∇swm −∇sψ) dx dt = 0.

We subtract and add on the left-hand side of the previous equality the
term ∫ T

0

∫
Ω

T (ψ)(∇swm −∇sψ) dx dt,

to get∫ T

0

∫
Ω

(∂twm + wm · ∇wm − f ,wm − ψ) dx dt

+
∫ T

0

∫
Ω

(T (wm) − T (ψ)(∇swm −∇sψ) dx dt

+
∫ T

0

∫
Ω

T (ψ)(∇swm −∇sψ) dx dt = 0.

(3.28)

Now, we shall use the following fundamental fact (for stronger, more refined,
properties see also Sect. 3.4.1)∫

Ω

[T (wm) − T (ψ)] (∇swm −∇sψ) dx ≥ 2
Re

‖∇s(w − ψ)‖2 ≥ 0. (3.29)

For the moment we claim this result and we will prove it in a more gen-
eral form after the proof of the present theorem. The main property, that is
essentially the definition of a monotone operator, is
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Ω

[
|∇swm|∇sw − |∇sψ|∇sψ)

]
(∇swm −∇sψ) dx ≥ 0,

see Proposition 3.22.
Since the middle term in (3.28) is nonnegative, we finally get∫ T

0

(∂twm +wm · ∇wm − f ,wm −ψ) + (T (ψ),∇swm −∇sψ) dt ≤ 0. (3.30)

It is now rather standard to pass to the limit as m → +∞ in almost all the
terms of (3.30), to prove (3.26). The challenge is now∫ T

0

(wm · ∇wm,wm) dt
?−→

∫ T

0

(w · ∇w,w) dt,

since it involves three times the function wm (note the difference from (2.21),
where the terms involved were um twice and the test function once).

In this case, to prove that such convergence takes place, it is necessary to
use an additional result proved in lemma 3.12. In particular, since we can use
that lemma with q = 3 we have the strong convergence

wmwm → w w in L3/2(0, T ; L3/2(Ω)).

We write component-wise∫ T

0

∫
Ω

wm · ∇wmwm dx dt =
d∑

k,l=1

∫ T

0

∫
Ω

wk
m

∂wl
m

∂xk
wl

m dx dt

=
d∑

k,l=1

∫ T

0

∫
Ω

wk ∂wl
m

∂xk
wl dx dt +

d∑
k,l=1

∫ T

0

∫
Ω

∂wl
m

∂xk

(
wk

mwl
m − wkwl

)
dx dt.

The first integral converges to
∫ T

0

∫
Ω w · ∇w dx dt as m → ∞, since ∇wm ⇀

∇w in L3(0, T ; L3(Ω)). The second one vanishes, as m → ∞, due to the strong
convergence of wmwm in L3/2(0, T ; L3/2(Ω)) and to the uniform bound of
∇wm in L3(0, T ; L3(Ω)). Passing to the limit as m goes to ∞ we finally get
inequality (3.26). ��

The Monotonicity Trick

At this point it is possible to conclude the proof of Theorem 3.9, namely
we have to show that B = T (w). This will be done by using the fol-
lowing argument: add together (3.26) and (3.25) and set φ = w − ψ
(at this point it is really necessary to use w as a test function) to ob-
tain ∫ T

0

∫
Ω

(B− T (ψ)) (∇sw −∇sψ) dx dt ≥ 0.
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Choose now an arbitrary η ∈ H1(0, T ; L2
σ)∩L3(0, T ; W 1,3

0,σ) and set, for ε > 0,

ψ = w − ε η

to get

ε

∫ T

0

∫
Ω

(B − T (w − ε η))∇sη dx dt ≥ 0.

By dividing by ε > 0 and by taking the limit3 as ε → 0+ we get∫ T

0

∫
Ω

(B − T (w))∇sη dx dt ≥ 0. (3.31)

Since (3.31) holds for an arbitrary η ∈ H1(0, T ; L2
σ)∩L3(0, T ; W 1,3

0,σ), it holds
also for −η (note that we are using the fact that H1(0, T ; L2

σ)∩L3(0, T ; W 1,3
0,σ)

is a linear space). Thus the integral in (3.31) is both nonnegative and non-
positive. This implies that it vanishes identically, for each η ∈ H1(0, T ; L2

σ)∩
L3(0, T ; W 1,3

0,σ) and proves the equality:

B =
2

Re
∇sw + (CSδ)2|∇sw|∇sw.

��
The SLM model (3.11), (3.12) shares also a uniqueness property and a stability
estimate. We collect them in the following theorem; see [195].

Theorem 3.16. Let w1 and w2 be weak solutions to the SLM model (3.11),
(3.12), corresponding respectively to the data (w1

0, f
1) ∈ W 1,3

σ,0 × L2(0, T ; L2
σ)

(w2
0, f

2) ∈ W 1,3
σ,0 × L2(0, T ; L2

σ). Then, the following estimate holds

‖w1 − w2‖L∞(0,T ;L2)

≤
[
‖w1

0 − w2
0‖2 +

1
2c1

∫ T

0

‖f1 − f2‖2 dt

]
e
(

c2‖∇w1‖2
L2(0,T ;L3)

+
c1T
2

)
,

for some positive constants c1, c2.

The theorem implies that if w1
0 = w2

0 and f1 = f2, then there exists a unique
solution to the problem.

3 In this case we are using the property that

� 
λ �→
∫

Ω

T (u + λv)∇sw dx dt ∈ � is a continuous function ∀u,v,w∈W 1,3.

This property means that the operator is hemicontinuous, see Sect. 3.4.1 for
further details.
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Proof. We give just the proof of uniqueness, the other result may be achieved
with the same technique. Let us subtract the equation satisfied by w2

from that satisfied by w1 and multiply the resulting equation by W =
w1 − w2:

1
2

d

dt
‖W‖2 +

∫
Ω

[
T (w1) − T (w2)(w1 − w2)

]
dx =

∫
Ω

W · ∇w1W dx.

By using again (3.29) and the usual estimates for the term on the right-hand
side∣∣∣∣∫

Ω

W · ∇w1W dx
∣∣∣∣ ≤ ‖W‖ ‖W‖L6‖∇w1‖L3 ≤ CS‖W‖ ‖∇sW‖ ‖∇w1‖L3 ,

we easily get

1
2

d

dt
‖W‖2 +

2
Re

‖W‖2 ≤ C‖W‖2‖∇w1‖2
L3 .

Due to the known regularity of w1, which is better than that usually known
for the NSE, we can use the Gronwall lemma to deduce that

‖W(t)‖2 ≤ ‖W0‖2 e 2C
∫

T
0 ‖∇w1‖2

L3 dt.

This implies ‖W(t)‖ ≡ 0. ��

3.4.1 Further Properties of Monotone Operators

In this section we introduce some concepts regarding monotone operators.
This is motivated by the fact that the extra term

−∇ · |∇sw|r−2∇sw (3.32)

in (3.15), (3.16) is one of the most relevant particular cases. Due to its impor-
tance, the operator in (3.32) is called the r-Laplacian and it has a number of
important mathematical properties.

We start with some generalities on monotone operators, since they repre-
sent a well-known part in the theory of PDE.

Definition 3.17. Let (X, ‖ · ‖X) be a Banach space with topological dual X ′.
We say that the operator A : X → X ′ is monotone if

〈Au − Av, u − v〉 ≥ 0, ∀u, v ∈ X, (3.33)

where 〈·, ·〉 denotes the duality pairing between X and X ′.
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In the case of X = X ′ = � (i.e. A is a real function), it is easy to see that

A monotone ⇐⇒ A is a monotone increasing function,

so the concept of monotone operator is a generalization of the concept of
monoton increasing functions.

The following property connects monotone operators and monotone in-
creasing functions

Proposition 3.18. Let A : X → X ′ be a given operator and set

f(t) = 〈A(u + tv), v〉, ∀ t ∈ �.

Then, the following statements are equivalent

(a) The operator A is monotone.
(b) The function f : [0, 1] → � is monotone increasing for any u and v

belonging to X.

To detect if an operator is monotone there is a well-known result that connects
monotone operators and convex functionals of the calculus of variations.

Proposition 3.19. Let f : X → � be a Gateaux-differentiable functional.
Then, the following two conditions are equivalent

(i) f is a convex functional, i.e.

f((1 − t)u + tv) ≤ (1 − t) f(u) + tf(v), ∀ t ∈ [0, 1], ∀u, v ∈ X.

(ii) f ′ : X → X ′ is monotone, where f ′(u) ∈ X ′ denotes the Gateaux-
derivative defined as

〈f ′(u), h〉 = lim
λ→0

f(u + λh) − f(u)
λ

, ∀h ∈ X.

Proof. First we observe that if the functional f is convex, then the function
φ(t) = f((1−t)u+tv), defined for t ∈ [0, 1] and u, v ∈ X, is a real convex func-
tion. Furthermore, a function φ is a differentiable, real, and convex function
if and only if φ′ is monotone increasing.

Differentiation gives φ′(t) = f ′((1− t)u + tv)(v− u). Since f ′(w) ∈ X ′, for
each w ∈ X, we can write

φ′(t) = 〈f ′((1 − t)u + tv), v − u〉.

We can now prove that (i) ⇒ (ii). If f is a convex functional, then φ is convex
and consequently φ′(t) is a monotone increasing function. This implies that
φ′(0) ≤ φ′(1), namely

〈f ′(u) − f ′(v), u − v〉 ≥ 0 ∀u, v ∈ X,
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i.e. f ′ is monotone.
Conversely, to prove that (ii) ⇒ (i) let f ′ : X → X ′ be monotone. Then,

if t > s

φ′(t) − φ′(s) = 〈f ′(u + t(u − v)) − f ′(u + s(u − v)), v − u〉 ≥ 0.

Thus the real function φ′ is monotone increasing, which implies that φ is
a convex function and hence f is a convex functional. ��
The above result may be applied to the functional

J(v) =
1
r

∫
Ω

|∇sv|r dx ∀v ∈ [W 1,p
0 (Ω)]d,

which is convex (check it!) and its Gateaux-derivative

lim
λ→0

J(v + λw) − J(v)
λ

=
∫

Ω

|∇sv|r−2 ∇sv∇sw dx, ∀v, w ∈ [W 1,3
0 (Ω)]d

turns out to be the variational definition of the r-Laplacian. In other words,
by using the Riesz representation theorem we can define the nonlinear oper-
ator

Tr(v) = −∇ · (|∇sv|r−2 ∇sv) : [W 1,r
0 (Ω)]d → [W−1,r/(r−1)(Ω)]d

as

〈Tr(v1),v2〉 =
∫

Ω

|∇sv1|r−2 ∇sv1 ∇sv2 dx ∀v1,v2 ∈ [W 1,r
0 (Ω)]d.

(3.34)
Note that W−1,r/(r−1)(Ω) = W−1,r′

(Ω) is the dual space of W 1,r
0 (Ω).

The nonlinear operator Tr shares other good properties. In fact, from the
Definition (3.34) it is easy to see that

(a) Tr is bounded, i.e. ‖Tr(v)‖[W−1,r′ (Ω)]d ≤ c‖v‖r−1

[W 1,r
0 (Ω)]d

,

(b) Tr is coercive, i.e. 〈Tr(v),v〉 ≥ ‖∇sv‖3
[W 1,r

0 (Ω)]d
.

Furthermore, it is possible to show that Tr(v) is hemicontinuous, i.e. ∀u,v,w
∈ [W 1,3

0 (Ω)]d the map

λ �→
∫

Ω

Tr(u + λv)∇sw dx is a continuous real function,

see Proposition 1.1, Chap. 2 in [221].

Remark 3.20. These properties are very important since, by following the same
path as Theorem 3.9, it is possible to prove an abstract result.

The application of the “Monotonicity trick” argument can be found in
all its generality for instance in Lions [221]. Just to give a flavor of the ba-
sic properties we state a typical theorem that can be proved for monotone
operators.
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Theorem 3.21. Let (V, ‖ · ‖V ) be a reflexive Banach space and let V ′ be its
topological dual, with duality pairing denoted by 〈·, ·〉. Let A : V → V ′ be an
operator (possibly nonlinear) such that

(i) A is monotone;
(ii) A is bounded: ∃ c > 0 such that ‖Aw‖V ′ ≤ c‖w‖p−1

V , for each w ∈ V ;
(iii) A is hemicontinuous;
(iv) A is coercive: ∃α > 0 : such that 〈Aw, w〉 ≥ α‖w‖p

V , for 1 < p < ∞.

Then, for each f ∈ V ′, the equation

Au = f

has a solution u ∈ V. Furthermore, if A is strictly monotone, i.e.

〈Au − Av, u − v〉 > 0 ∀u, v ∈ V,

then such a solution is unique.
To study the time evolution problem, suppose that H is a Hilbert space

such that 4

V ↪→ H with continuous and dense inclusion.

Then, if A satisfies (i), (ii), (iii), (iv) and if f ∈ Lp′
(0, T ; V ′), then equation

ut + Au = f with u(0) = u0

has a unique solution u ∈ Lp(0, T ; V ).

The proof can be found in [221] and [320]. Note that, since ut = −Au + f ,
it follows that ut ∈ Lp′

(0, T ; V ′). By using an interpolation result (see for
instance [84]) it follows that

u ∈ C(0, T ; V ′)

and the initial condition makes sense (at least in this space).

Basic Properties of the r-Laplacian

To simplify the exposition of the following result we select the simplest bound-
ary conditions: periodic boundary conditions with zero mean imposed upon
all data and the solution. In this case we define the functions spaces X1 and
X1

r by

X1 := closure in [H1(Ω)]3 of w ∈ [C1(Ω)]3 : w satisfying (2.3),

X1
r := closure in [W 1,r(Ω)]3 of w ∈ [C1(Ω)]3 : w satisfying (2.3).

4 A practical example is V = W 1,p(Ω), with p ≥ 2, and H = L2(Ω).
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By using the Riesz representation theorem, we can define a nonlinear operator
Tr( · ) : X1

r → (X1
r)′ by the correspondence

〈Tr(v1),v2〉 = (|∇sv1|r−2 ∇sv1,∇sv2), ∀v1,v2 ∈ X1
r . (3.35)

As we pointed out before Tr is an abstract representation of the operator

Tr(v) ∼ −∇ · (|∇sv|r−2 ∇sv).

Proposition 3.22. For r ≥ 2,v1,v2 ∈ X1
r, the operator Tr( · ) satisfies:

〈Tr(v1) − Tr(v2),v1 − v2〉 ≥ ξ(‖∇s(v1 − vs)‖Lr) ‖∇s(v1 − vs)‖Lr (3.36)

‖Tr(v1) − Tr(v2)‖(X1
r)′ ≤ Γ (ρ) ‖∇s(v1 − vs)‖Lr , (3.37)

for ‖∇svj‖Lr ≤ ρ, where Γ (ρ) = C (2r − 3)ρr−1 and ξ(s) = C
(

1
2

)r−2
sr−1.

Remark 3.23. The property (3.37) is the local Lipschitz continuity. Prop-
erty (3.36) is a monotonicity condition which is called “strong monotonicity”
by Vainberg [298] and “uniform monotonicity” by Zeidler [320]. If 1 < r ≤ 2,
the operator Tr( · ) satisfies the weaker monotonicity condition (called “strict
monotonicity” by Zeidler [320])

(Tr(v1) − Tr(v2),v1 − v2) > 0 for all v1,v2 ∈ X1
r ,v1 �= v2.

The proposition shows that it is possible to get both upper and lower bounds
on quantities involving the operator Tr( · ) and with these a fairly complete
analysis of its effects is possible. The proof of Proposition 3.22 is based upon
the following algebraic inequality.

Lemma 3.24. Consider the function ψ : �→ � defined by

ψ(u) =
{ |u|p−2u if u �= 0

0 if u = 0.

Then:

(a) if p > 1, then ψ is strictly monotone;
(b) if p = 2, then ψ is strongly monotone, i.e.

∃ c > 0 : < ψ(u) − ψ(v), u − v >≥ c|u − v|2 ∀u, v ∈ �;

(c) if p ≥ 2, then ψ is uniformly monotone, i.e.

(ψ(u) − ψ(v))(u − v) ≥ a(|u − v|)|u − v|2 ∀u, v ∈ �,

where the function a : �+ → �+ is continuous and strictly monotone
increasing, with a(0) = 0 and limt→+∞ a(t) = +∞. A typical example is
a(t) = α tp−1, with α > 0 and p > 1.
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Proof. The proofs of (a) and (b) are straightforward. Regarding part (c), it
easily follows from the algebraic inequality

∃ c > 0 : (|u|p−2u − |v|p−2v)(u − v) ≥ c|u − v|p ∀u, v ∈ �

and fixed p ≥ 2.
The proof of the above inequality is given by considering first the case

0 ≤ v ≤ u. Then,

up−1 − vp−1 =
∫ u−v

0

(p − 1)(t + v)p−2 dt

≥
∫ u−v

0

(p − 1) tp−2 dt = (u − v)p−1.

In the case v ≤ 0 ≤ u we can use the inequality

∃ c > 0 :

(
N∑

i=1

ζi

)r

≤ c
∑

ζr
i ∀ 0 < r < ∞, ∀ ζi ∈ �+

to obtain
up−1 + |v|p−1 ≥ c(u + |v|)p−1,

concluding the proof. ��
The proof of Proposition 3.22 is then an easy consequence of Lemma 3.24.

To illustrate the role applicability of Proposition 3.22, we consider two
questions. First, it is known from basic properties of averaging, see Hirschman
and Widder [152] or Hörmander [158], that

u → u as δ → 0

in various spaces, including L∞(0, T ; L2(Ω)). Since the solution w to SLM
eddy viscosity model (3.15), (3.16), with periodic boundary conditions ap-
proximates u, it is reasonable to ask if this limit consistency condition (see
Chap. 6) holds for w as well, see Kaya and Layton [186, 188].

Theorem 3.25. Let u be the solution to the NSE under periodic boundary
conditions and let w be a solution to the SLM (3.15), (3.16). Suppose the
energy dissipation rate is regular:

ε(t) :=
2

|Ω|Re

∫
Ω

|∇su|2 dx ∈ L2(0, T ), (3.38)

and that u ∈ L3(0, T ;X1
3). Then, provided f ∈ L2(Ω × (0, T )),

w → u as δ → 0, in L∞(0, T ; [L2(Ω)]3) ∩ L2(0, T ;X1).
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Remark 3.26. Condition (3.38) is a natural one, but it is unnecessarily strong.
Using an inequality of Serrin [275], it can easily be relaxed be to the condi-
tion (2.31) we encountered in the study of smooth solutions to the NSE.

Proof. The idea is to rewrite the NSE satisfied by u to resemble (3.15), i.e.
we add to both sides the term (CSδ)2(T3(u),v) to get

(ut,v) +
2

Re
(∇u,∇v) + (u · ∇u,∇v) + (CSδ)2(T3(u),v)

= (f ,v) + (CSδ)2(T3(u),v).

Next, (3.15) is subtracted from this to obtain an equation for φ = u − w.
The estimates in Proposition 3.22 are then used to show that ‖u − w‖ → 0
as δ → 0. To proceed, subtraction gives

(φt,v)+
2

Re
(∇sφ,∇sv) + (u · ∇u − w · ∇w,v)

+ (CSδ)2(T3(u) − T3(w),v) = (f − f ,v) + (T3(u),v).

By setting v = φ, we note that

|(u · ∇u − w · ∇w,v)| = |(φ · ∇u, φ)| ≤ C‖φ‖1/2‖∇u‖ ‖∇φ‖3/2

≤ 1
Re

‖∇sφ‖2 + C(Re)‖∇u‖4‖φ‖2.

Thus, substituting v = φ in the equation satisfied by φ gives

1
2

d

dt
‖φ‖2 +

1
Re

‖∇sφ‖2 + (CSδ)2(T3(u) − T3(w),u − w)

≤ C(Re)‖φ‖2‖∇u‖4 +
1
2
‖f − f‖2 + (CSδ)2(T3(u), φ).

By monotonicity (Proposition 3.22),

(T3(u) − T3(w),u − w) ≥ (CSδ2)‖∇sφ‖3
L3

and Hölder’s inequality implies also

|(T3(u), φ)| = |(CSδ)2(|∇su| ∇su,∇sφ)|

≤ (CSδ)2‖∇sφ‖L3‖ |∇su|2‖L3/2 = (CSδ)2‖∇sφ||L3‖∇su‖2
L3

≤ (CSδ)2‖∇sφ‖3
L3 +

(CSδ)2

4
‖∇su‖3

L3 .

Combining these estimates gives

1
2

d

dt
‖φ‖2 +

1
Re

‖∇sφ‖2 ≤ C(Re)‖φ‖2‖∇u‖4 + ‖f − f‖2 +
(CSδ)2

4
‖∇su‖3

L3 .
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Now by the regularity assumption that ε(t) ∈ L2(0, T ), it follows that ‖∇u‖ ∈
L4(0, T ). Thus, Gronwall’s inequality implies

‖φ(t)‖2 +
2

Re

∫ t

0

‖∇sφ(s)‖2 ds

≤C

[
‖φ(0)‖2 + ‖f − f‖2

L2(0,T ;L2(Ω)) +
(CSδ)2

4

∫ t

0

‖∇su‖3
L3(s) ds

]
e
∫ t
0 ‖ε(s)‖2 ds

By the hypotheses of the theorem and the properties of the averaging operator,
all terms on the right-hand side vanish as δ → 0. ��
Remark 3.27. The assumption that u ∈ L3(0, T ;X1

3) is needed to ensure that
the approximate subfilter-scale stress S(u,u) := −(CSδ)2|∇su|∇su is regular
enough that

(CSδ)2
∫ T

0

‖S(u,u)‖3/2

L3/2 dt = (CSδ)2
∫ T

0

‖∇su‖3
L3 dt → 0 as δ → 0.

Since Trace[S(u,u)] = 0 in the SLM (3.15), (3.16) (because of the incom-
pressibility condition ∇ · u = 0), it is important to calculate the modeling
consistency error by comparing S(u,u) with

τ ∗(u,u) := τ (u,u) − 1
3
Trace[τ (u,u)] �.

A similar argument, using Proposition 3.22, can be used to bound the model
error ‖u − w‖ in terms of the model’s consistency ‖τ ∗(u,u) − S(u,u)‖. To
develop this bound, recall that u satisfies

ut + ∇ · (uuT ) − 1
Re

�u + ∇
(

p +
1
3
τ ii(u,u)

)
+ ∇ · τ ∗(u,u) = f .

Let φ = u − w. Subtracting (3.15) from this equation gives, in a variational
form,

(φt,v) + (u · ∇u−w · ∇w,v) +
2

Re
(∇sφ,∇sv)

− (S(u,u) − S(w,w),∇sv) = −(S(u,u) − τ ∗(u u),∇sv),

for any v ∈ L∞(0, T ; L2
σ) ∩ L2(0, T ;X1).

Setting v = φ, gives

1
2

d

dt
‖φ‖2 +

2
Re

‖∇sφ‖2 + (u · ∇u − w · ∇w, φ)

+ (CSδ)2(T3(u) − T3(w),u − w) = (τ ∗(u,u) − S(u,u),∇sφ).
(3.39)

It is clear from this that the modeling error ‖u − w‖ satisfies an equation
driven by the model’s consistency
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|‖τ ∗(uu) − S(uu)‖|
in an appropriate norm |‖ . ‖|. This quantity is evaluated at the true solution of
the NSE. Thus, it can be assessed by performing a DNS or taking experimental
data to compute τ ∗(u u)− S(uu) directly. Furthermore, Eq. (3.39) suggests
that if the model is stable to perturbations, then a small consistency error
(which is observable) leads to a small modeling error. In other words, the
model can be verified by experiment.

We have also the following result, see [186].

Theorem 3.28. Let u be a solution to the NSE under periodic boundary con-
ditions and suppose ε(t) := 2

|Ω|Re

∫
Ω |∇su|2 dx ∈ L2(0, T ). Suppose τ ∗(u,u) :=

(uuT − uuT ) − 1
3Trace[uuT − uuT ] � ∈ L2(Ω × (0, T )) and that S(u,u) ∈

L2(Ω × (0, T )). Then,

‖u− w||2L∞(0,T ;L2) +
2

Re
‖∇(u − w)‖2

L2(0,T ;L2)

+ (CSδ)2‖∇s(u − w)‖3
L3(0,T ;L3)

≤ C(Re, ‖ε‖L2(0,T ))‖R∗(u,u) − S(u,u)‖2
L2(Ω×(0,T )).

Proof. In (3.39) we use the lower monotonicity result for the r-Laplacian for
T3( · ) and the hypotheses for the terms on the right-hand side. This gives, for
φ = u− w:

1
2

d

dt
‖φ‖2 +

2
Re

‖∇sφ‖2 + (CSδ)2‖∇sφ‖3
L3

≤ |(u · ∇u, φ) − (w · ∇w, φ)| + 1
Re

‖∇sφ‖2

+ C(Re) ||τ ∗(u,u) − S(u,u)‖2.

As in the proof of Theorem 3.25,

|(u · ∇u − w · ∇w, φ)| = |(φ · ∇u, φ)| ≤ 1
2Re

‖∇φ‖2 + C(Re)‖∇u‖4‖φ‖2.

Thus,
d

dt
‖φ‖2 +

1
Re

‖∇sφ‖2 + (CSδ)2‖∇sφ‖3
L3

≤ C(Re)
[
‖∇u‖4‖φ‖2 + ‖τ ∗(u,u) − S(u,u)‖2

]
.

Most filtering processes are smoothing. Thus, for most filters

‖∇u‖ ≤ C(δ)‖u‖ ≤ C(δ) C(data).

Thus, the assumption that ‖∇u‖ ∈ L4(0, T ) can be unnecessary. However,
some filters, such as the top-hat filter, are not smoothing and this assumption
is necessary.

In all cases (due to the assumption or properties of filters) ‖∇u‖4(t) ∈
L1(0, T ) and Gronwall’s inequality can be applied to complete the proof. ��
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The key ingredients of the proofs of Theorems 3.25 and 3.28 are:

Condition 1: Stability of the LES model to data perturbation.
Condition 2: Enough regularity of the true solution to apply Gronwall’s
inequality. To these two, should be added
Condition 3: A model with small modeling error.

The second condition holds at least over small time intervals. It is unknown
whether it holds more generally (and it is connected with the famous unique-
ness question for weak solutions in three dimensions). Thus, to obtain a result
over O(1) time intervals, we need an extra regularity assumption on the energy
dissipation rate of the true solution of the NSE.

The first condition is generally satisfied by very stable models, such as
eddy viscosity models. However, these models fail the third condition typically.
Models which satisfy the third condition, typically fail the first one. The quest
for “universality” in LES models can simply be stated to be a search for
a model satisfying conditions 1 and 3!

Remark 3.29. We conclude this section by observing that there is intense ac-
tivity in the study of existence and regularity of solutions for problems involv-
ing the r-Laplacian, also in the case in which r−2 is negative (this corresponds
to 1 < p < 2 in Lemma 3.24). The interest in such cases comes from the mod-
eling of power-law fluids more than from the study of turbulence. Examples
of fluids with governing equations involving 1 < p < 2 are, for instance,
electrorheological fluids, fluids with pressure-depending viscosities or, in gen-
eral, fluids with the property of shear thickening, i.e. with viscosity increasing
as |∇su| increases. The reader can find several results, together with an ex-
tensive bibliography on recent advances on this topic in Málek, Nečas, and
Ružička [229] and in Frehse and Málek [116].

3.5 Backscatter and the Eddy Viscosity Models

We close this chapter with a few remarks on an interesting and important
phenomenon – the backscatter.

While, on average, energy is transferred from large scales to smaller scales
(“forward-scatter”), it has been proven that the inverse transfer of energy
from small to large scales (“backscatter”) may be quite significant and should
be included in the LES model. The action of the backscatter in the energy
cascade context is illustrated in Fig. 3.3. Backscatter does not contradict the
energy cascade concept: the average energy transfer is from the large scales
to the small ones (i.e. from the small wavenumbers to the large ones). This
transfer is called forward-scatter and is denoted by εFS in Fig. 3.3. However,
at certain instances in time and space, there is an inverse transfer of energy,
denoted by εBS in Fig. 3.3.

Piomelli et al. [254] have performed DNS of transitional and turbulent
channel flows and compressible isotropic turbulence. In all flows considered,
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Fig. 3.3. Schematic of the energy cascade

approximately 50% of the grid points experienced backscatter when a Fourier
cutoff filter was used, and somewhat less when a Gaussian filter or a box filter
were used. It is now generally accepted that an LES model should include
backscatter.

Eddy viscosity models, in their original form, cannot include backscat-
ter, being purely dissipative. An example in this class is the Smagorinsky
model (3.15), (3.16). Its inability to include backscatter is believed to be one
of the sources of its relatively low accuracy in many practical flows. To include
backscatter, the Smagorinsky model is usually used in its dynamic version,
proposed by Germano et al. [129]. However, care needs to be taken, since the
resulting model can be unstable in numerical simulations. Thus, the dynamic
version of the Smagorinsky model is usually used with some limiters for CS .

There are some LES models which introduce backscatter in a natural way.
Some of these will be presented in Chaps. 7 and 8.

3.6 Conclusions

In this chapter we introduced eddy viscosity methods, probably the oldest
methods for studying and describing turbulence. We mainly focused on the
Smagorinsky model (3.11) and some of its simple variations.
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The interest in this model is two-fold. First, due to its clear energy balance
it works as a paradigm in the design of advanced and more sophisticated
models, such as those we will introduce in Chap. 4. The link with the K41-
theory is also very appealing and it will work again as a guideline.

Second, the mathematical analysis of this eddy viscosity method – initiated
by Ladyžhenskaya – uses relevant tools (such as monotone operators) that can
also be successfully employed in the analysis of different models. (The study
of equations similar to (3.11) is currently a very active area of mathematical
research.)

Even if some delicate mathematical points are not yet completely known,
the stability estimates that can be derived for (3.11) are also useful to derive
results of consistency. For the numerical analysis of this model, we refer to
the exquisite presentation of John [175].



4

Improved Eddy Viscosity Models

4.1 Introduction

The connection between turbulent fluctuations and the choice

νT = (CSδ)2 |∇su|

of the Smagorinsky’s model eddy viscosity seems tenuous. Thus, it is natural
to seek other choices of νT with a more direct connection with turbulence
modeling.

Boussinesq based his model upon the analogy between perfectly elastic
collisions and interaction of small eddies. Within this reasoning (whose “opti-
mism” he surely understood) it is clear that the amount of turbulent mixing
should depend mainly on the local kinetic energy in the turbulent fluctuations,
k′:

νT = νT (δ, k′), k′(x) =
1
2
|u′|2(x).

The simplest functional form which is dimensionally consistent is the, so-
called, Kolmogorov–Prandtl relation [258], given by

νT
∼= Cδ

√
k′, k′ =

1
2
|u′|2. (4.1)

One method of estimating k′ is to follow the approach taken in the k − ε
conventional turbulence model (see Sect. 4.3 for a brief description and Mo-
hammadi and Pironneau [239] or Coletti [67] for further details) and solve
an approximate energy equation. For conventional turbulence models, O(1)
structures are modeled and this extra work is justified. In LES, the idea is
to use simple, economical models because only small structures are to be
modeled. This has the advantage of avoiding the modeling steps needed in
deriving the k and ε equation. Further, the recent important work of Duchon
and Robert [97] on the energy equation of turbulence shows the correctness
of solving a strong form of the energy equation for k to be unclear.
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In keeping with the ideas of LES, a simple and direct estimate of k′ is
obtained by scale-similarity (Chap. 8): the best estimate for the kinetic en-
ergy in the unresolved scales is that of the smallest resolved scales. This ap-
proach was first taken (to our knowledge) by Horiuti [156, 157] and validated
computationally by Sagaut and Lê [268]. Mathematical development and ex-
tension of these ideas was begun in Iliescu and Layton [170] and Layton and
Lewandowski [208].

To illustrate this, recall that if we assume the turbulence is homogeneous
and isotropic, then E(k) is given by the K-41 theory in the inertial range by

E(k) ∼ α ε2/3 k−5/3 for 0 < k ≤ η ∼
( ε

ν3

)1/4

.

We have, by direct calculation

k′ =
1
2

∫ η

k1

E(k) dk = (inserting (4.1)) =
3
4

α ε2/3
[
π−2/3 δ2/3 − ν−1/2 ε1/6

]
.

If we consider the asymptotic limit of very large Reynolds numbers (or very
small ν), then we can estimate k′ roughly by

k′ ∼ 1
2

∫ ∞

k1

E(k) dk =
3
4

π−2/3 α ε2/3 δ2/3.

Consider now a scale-similarity (see Chap. 8 for further details) estimate of
k′:

k′ = energy in scales between 0 and O(δ)
≈ constant×[energy in resolved scales between O(δ) and O(2δ)].

This gives, by direct calculation

kscale-similarity :=
1
2

∫ k1

1
2 k1

E(k) dk =
1
2

∫ k1

1
2 k1

α ε2/3 k−5/3

=
(

1
2

α ε2/3

)(
−3

2

)[(π

δ

)−2/3

−
(

π√
2δ

)−2/3
]

=
3
4

α ε2/3 π−2/3 δ2/3
(
21/3 − 1

)
. (4.2)

Thus, to within the accuracy of the K-41 theory [117], and the approxima-
tion (4.2),

k′ =
(
21/3 − 1

)
kscale-similarity .

Now, kscale-similarity = 1
2

∫
Ω

∣∣u − u
∣∣2 dx for a Gaussian filter. Thus, we have

a computable estimation of k′ in terms of resolved quantities given by
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k′(x, t) ∼
(
21/3 − 1

) 1
2

∣∣u − u
∣∣2 (x, t).

An alternate route to formulas of this type is to simply “model” 1
2 |u− u|2

by 1
2

∣∣u− u
∣∣2 . This leads to the same approximation

k′ =
1
2
|u− u|

2

∼ (21/3 − 1)
1
2

µ0 |u− u|2, µ0 = constant.

Inserting these approximations into (4.1) gives the LES eddy viscosity model:

wt + ∇ · (wwT ) + ∇q − 1
Re

∆w −∇ · (µ0 δ |w − w| ∇sw) = f , (4.3)

∇ ·w = 0. (4.4)

The parameter µ0 can either be determined dynamically or estimated by
adapting the approach of Lilly [220].

Remark 4.1. It is possible to find improved estimates of k′ by using more infor-
mation from the resolved scales. For example, a more accurate approximation
of u from the resolved scales is u ≈ 3u−3u+u (see Chap. 8). This gives the
approximation u − u ≈ 2u − 3u + u. Thus, the first example more accurate
than the above is

k′ ≈ 1
2

∣∣∣2u− 3u + u
∣∣∣2 .

The LES Eddy Viscosity Model (4.3)

The eddy viscosity model (4.3) is much less dissipative than the Smagorinsky
model. Indeed, in smooth regions |∇sw| = O(1), while where w undergoes an
O(1) change across the smallest length scale δ, |∇sw| = O(δ−1). Thus,

νSmag = (Csδ)2 |∇sw| =
{

O(δ2) in smooth regions,
O(δ) for fluctuations,

while (recall that ‖w − w‖ = O(δ2) in smooth regions),

νT = µ0 δ |w − w| =
{

O(δ3) in smooth regions,
O(δ) for fluctuations.

Since (4.3) is an EV model, its energy budget is clear (Proposition 3.2). Never-
theless, the fact that νT (w) can be unbounded places the model (4.3) outside
the usual Leray–Lions theory for verifying existence of a distributional solu-
tion to the model. The mathematical elucidation of model (4.3) was begun
in Layton and Lewandowski [208]. It is again based upon the global energy
equality of EV methods.
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Definition 4.2. Let µ0 > 0 be fixed and consider (4.3) and (4.4) subject to
periodic boundary conditions. Then, w is a distributional solution of (4.3)
and (4.4) if

w ∈ Y =
{
closure of C∞(0, T ; C∞

per) in v ∈ L∞(0, T ; L2
σ)∩L2(0, T ; H1

σ(Ω))
}

and for all φ ∈ C∞(0, T ; C∞
per) such that ∇ · φ = 0 and φ(T, ·) = 0,∫

Ω

w0(x) · φ(x, 0) dx −
∫ T

0

∫
Ω

w
∂φ

∂t
dx dt

−
∫ T

0

∫
Ω

(w wT ) : ∇φ + νT (w)∇sw : ∇sφ dx dt =
∫ T

0

∫
Ω

f · φ dx dt.

The symbol C∞
per denotes the space of smooth periodic functions.

In [208] existence of distributional solutions to the model (4.3), (4.4) was
proven. Here we just state the main result and give some ideas of the technique
used in the proof.

Theorem 4.3 (Theorem 3.1 of [208]). For u0 ∈ L2(Ω) and f ∈ L2(Ω ×
(0, T )), there exists at least one distributional solution to the model (4.3),
(4.4).

The theory behind this result also includes many filters, even differential fil-
ters, and many eddy viscosities νT (w) which minimally satisfy the following
three consistency and growth conditions: for all w ∈ Y

1. ν + νT (w) ≥ C0 > 0,
2. νT (w) ∈ L∞(0, T ; L2),
3. ‖νT (w)‖L∞(0,T ;L2) ≤ C

(
1 + ‖w‖L∞(0,T ;L2)

)
.

The proof of this theorem uses Lewandowski’s theory of truncated transport
(see [216, 217, 208]). This theory is quite technical in detail, but simple in
conception: an unbounded nonlinearity is truncated to be bounded between
−n and n, producing an approximate solution wn. The intricate mathematical
details (for which we refer the reader to [216, 217, 208]) lie in extracting the
limit of wn as n → ∞ and showing it to be a solution of the original equations
in a meaningful sense.

Experiments with model (4.3) have, so far, been positive. Preliminary tests
of turbulent channel flow of Iliescu and Fischer [167] indicate that model (4.3)
replicates the standard turbulent statistics reasonably well. For a thorough
description of the computational setting and the usual statistics of the turbu-
lent channel flow (Fig. 12.1), one of the most popular test problems for LES
validation, the reader is referred to Chap. 12.

We computed statistics of the mean velocity u (Fig. 4.1), of the off-diagonal
Reynolds stresses u′ v′ (Fig. 4.2), and of the root mean square of the stream-
wise velocity fluctuations u′ u′ (Fig. 4.3). A detailed description of the quan-
tities presented in Figs. 4.1–4.3 is given in Chap. 12. The three statistics for
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the LES model (4.3) were compared with the fine DNS results of Moser, Kim
and Mansour [242], which were used as a benchmark. We are currently com-
paring model (4.3) with other EV LES models, such as Smagorinsky [277], in
the numerical simulation of channel flows [40]. John has conducted extensive
tests of νT = µ0 δ |w−w| as an eddy viscosity term incorporated into a mixed
model, also with good results [173, 174].

Fig. 4.1. Turbulent channel flow simulations, Reτ = 180. Statistics of the mean
streamwise velocity 〈u〉 for model (4.3) (+) and the fine DNS in [242] (·)

Fig. 4.2. Turbulent channel flow simulations, Reτ = 180. Statistics of the off-
diagonal Reynolds stresses 〈u′ v′〉 for model (4.3) (+) and the fine DNS in [242] (·)
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Fig. 4.3. Turbulent channel flow simulations, Reτ = 180. Statistics of the root
mean square of the streamwise velocity fluctuations 〈u′ u′〉 for model (4.3) (+) and
the fine DNS in [242] (·)

The eddy viscosity νT = µ0 δ |w−w| has the simplest form and most direct
connection with the physical ideas of turbulent mixing, so it is not surprising
that closely related models have been independently tested in practical com-
putations. In particular, interesting work has been done by Horiuti [156] upon
scale-similarity models in general and models like the present νT . Sagaut and
Lê [268] have tested geometric averages of νT and νSmag:

ν = νθ
T ν

(1−θ)

Smag = C δ2−θ |w − w|θ |∇sw|1−θ,

in some very challenging compressible flow problems.
What is surprising is that these models, which are simple to implement

and give better results than the Smagorinsky model, have not yet replaced
the Smagorinsky model in engineering calculations.

Dimensionally Equivalent Models

Not all models that are dimensionally equivalent can be expected to perform
analogously. Thus, there is a real interest in exploring dimensionally equiv-
alent versions of the model to test their differences, relative advantages and
disadvantages. Surprisingly, it is an open problem to test and compare the
three which come immediately to mind:

νT = µ0 δ |w − w|, that is the model (4.3) , (4.5)
νT = µ1 δ2 |∇s(w − w)|, (4.6)
νT = µ2 δ3 |∆(w − w)|. (4.7)
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The model (4.6) was studied and tested by Hughes, Mazzei, and Jansen [160]
who called it the “small-large Smagorinsky model”. To date, an abstract the-
ory for (4.6) has not (to our knowledge) been developed, but it seems at-
tainable by using the mathematical tools of Ladyženskaya [195, 197]. The
model (4.7) seems appealing computationally, but a mathematical devel-
opment of it seems beyond current techniques. The Gaussian–Laplacian
model of [170], which we present next, is a better candidate for a robust
model.

4.2 The Gaussian–Laplacian Model

The Gaussian–Laplacian model is again an EV model based on Boussinesq’s
analogy presented at the beginning of this chapter. However, in contrast with
the models introduced in Sect. 4.1 which are based essentially on the scale-
similarity assumption, the Gaussian–Laplacian model is based on a different
approach, the approximate deconvolution. Chapter 7 gives a detailed presen-
tation of the approximate deconvolution. In this section, we just present the
main idea in approximate deconvolution (i.e. use u to obtain an approxima-
tion for u′), and use it to get an approximation for k′. To do this, we will
follow the presentation in [170].

Since u′ = u − u, taking Fourier transforms and using the convolution
theorem, we have û′ = û− u = û−ĝδ(k) û hence û′ = (ĝδ(k)−1−1) ĝδ(k) û, or

û′(k) =
(

1
ĝδ(k)

− 1
)

û(k). (4.8)

The key feature of the Gaussian is its smoothing property which is equivalent
to the decay of ĝδ(k) as |k| → ∞. Thus, Taylor series expansion of ĝδ(k),

ĝδ(k) = 1 − δ2

4γ
|k|2 + . . . ,

(which have the opposite behavior) are not appropriate. The simplest ap-
proximation preserving this is the subdiagonal (0, 1)-Padé approximation, see
Chap. 7 for details:

ĝδ(k) =
1

1 + δ2

4γ |k|2 + O(δ4), (4.9)

where γ is the constant in the definition of the Gaussian filter gδ. The approx-
imation (4.9), used in (4.8), gives:

û′(k) =
δ2

4γ
|k|2 û(k) + O(δ4).
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This gives the approximation to the kinetic energy of the turbulent fluc-
tuations:

k′ =
1
2

δ2

4γ
|∆w|2 + O(δ4)

and consequently of the turbulent viscosity coefficient

νT = µ3
δ3

4γ
|gδ ∗ ∆w|.

Here again a choice must be made regarding an outer or inner convolution,
i.e. should the model be |gδ ∗∆w|2 (as we are inclined to believe) or gδ ∗|∆w|2
(which is also possible)? We have chosen the former. The resulting model is
the Gaussian–Laplacian (GL):

wt + ∇ · (w wT ) −∇q − 1
Re

∆w −∇ ·
(

µ3
δ3

4γ
|gδ ∗ ∆w| ∇sw

)
= f , (4.10)

∇ · w = 0. (4.11)

It is interesting to note that νT is active for high local fluctuations (or local
curvatures) rather than gradients. In particular, for shear flows, |∇w| can
be large, while |∆w| = 0. Thus, the GL model (4.10) has many apparent
advantages over the Smagorinsky model [277].

The eddy viscosity in (4.10) is bounded, thanks to the regularization via
convolution by a Gaussian. Thus, it is possible in Theorem 4.3 to extend the
Leray–Lions theory of weak solutions of the NSE to the GL model (4.10). We
do this in Sect. 4.2.1.

The extra eddy viscosity term in (4.10) is called a Gaussian–Laplacian.
It has other interesting mathematical properties and has been used for im-
age smoothing in Mikula and Sgallari [236] and Catté et al. [57]. Interest-
ingly enough, the structure of the Gaussian–Laplacian model (4.10) (with
its explicit regularization) will come back also in the study (more specif-
ically in the numerical implementation [175]) of the Rational model, see
Chap. 7.

4.2.1 Mathematical Properties of the Gaussian–Laplacian Model

This section considers the question of existence of weak solutions to the sys-
tem (4.10). Thus, we seek (w, q) satisfying:

wt + ∇ · (w wT ) + ∇q − 1
Re

∆w −∇ ·
(

µ3
δ3

4γ
|gδ ∗ ∆w| ∇sw

)
= f , (4.12)

∇ · w = 0, (4.13)
w(x, 0) = gδ ∗ u0(x), for x ∈ Ω, (4.14)

w(x, t) = 0, for x ∈ ∂Ω and t > 0. (4.15)
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The Dirichlet boundary conditions we take in (4.15) are convenient for study-
ing the existence of solutions. The existence result we give also holds if the
model is studied subject to periodic boundary conditions. It is known, how-
ever, that for modeling accuracy near ∂Ω and computational efficiency, the
boundary condition (4.15) should be replaced, see Chap. 10.

Theorem 4.4. Let T > 0, and Ω be a bounded domain in �d, d = 2, 3.
Then, for any given u0 ∈ L2

σ and f ∈ L2(0, T ; L2
σ), there exists at least one

weak solution to (4.12)–(4.15) in Ω × (0, T ). This weak solution satisfies the
energy inequality

k(t) +
∫ t

0

εGL(t′) dt′ ≤ k(0) +
∫ t

0

P (t′) dt′,

where k(t) =
1
2

∫
Ω

|w|2 dx, P (t) =
∫

Ω

f ·w dx, and

εGL(t) =
∫

Ω

1
Re

|∇w|2 + µ3
δ3

4γ
|gδ ∗ ∆w| |∇sw|2 dx.

Remark 4.5. The model (4.12)–(4.15) without regularization is more difficult
due to the unbounded coefficient |∆w| in (4.12). Appropriate mathematical
tools for such problems are in their early stages of development; see Gallouët
et al. [125].

Proof (of Theorem 4.4). We follow the existence proof in the NSE case,
see Sect. 2.4. We shall use the Faedo–Galerkin method. Let D(Ω) = {ψ ∈
C∞

0 (Ω) : ∇ · ψ = 0 in Ω}, L2
σ the completion of D(Ω) in L2(Ω), H1

0,σ(Ω) the
completion of D(Ω) in W 1,2(Ω) and {ψr} ⊂ D(Ω) be the orthonormal basis
of L2

σ given in Lemma 2.3 [121]. We shall look for approximate solutions wk

of the form:

wk(x, t) =
k∑

r=1

ckr(t)ψr(x) k ∈ �,

where the coefficients ckr are required to satisfy the following system of ordi-
nary differential equations:

dckr

dt
+

k∑
i=1

1
Re

(∇ψi,∇ψr) cki +
k∑

i,s=1

(ψi∇ψs, ψr) cki cks

+µ3
δ3

4γ

k∑
i=1

cki

⎛⎝ k∑
j=1

|ckj(gδ ∗ ∆ψr)| ∇sφi,∇sψr)

⎞⎠ = (f , ψr), (4.16)

for r = 1, · · · , k, with the initial condition

ckr(0) = (gδ ∗ v0, ψr).
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Multiplying (4.16) by ckr , and summing over r, we get

‖wk(t)‖2 +
2

Re

∫ t

0

‖∇wk(ζ)‖2 dζ + µ3
δ3

4γ

∫ t

0

|gδ ∗ ∆wk(ζ)| |∇swk(ζ)|2 dζ

=2
∫ t

0

(wk(ζ), f (ζ)) dζ + ‖wk(0)‖2 ∀ t ∈ [0, T ).

Using the Cauchy–Schwarz inequality, Körn’s inequality, and Gronwall’s
lemma, we get:

‖wk(t)‖2 +
2

Re

∫ t

0

‖∇wk(ζ)‖2 dζ ≤ M ∀ t ∈ [0, T ), (4.17)

with M independent of t and k. Thus,

|ckr(t)| ≤ M1/2 ∀ r = 1, · · · , k. (4.18)

From the elementary theory of partial differential equations, (4.18) implies
that (4.16) admits a unique solution ckr ∈ W 1,2(0, T ) for all k ∈ � (as in
Sect. 2.4.4). Using the same approach as the one in [121], from these a priori
bounds we get the existence of w ∈ L2(0, T ; H1

0,σ(Ω)) such that

lim
k→∞

(wk(t) − w(t),w) = 0 uniformly in t ∈ [0, T ], ∀w ∈ L2(Ω), (4.19)

lim
k→∞

∫ T

0

(∂i(wk − w),w) dζ = 0 ∀ w ∈ L2(Ω × [0, T ]), i = 1, · · · , k. (4.20)

Remark 4.6. This easy energy budget, with the above weak convergence is the
first, necessary step in a Faedo–Galerkin method. The next, difficult step is
to prove stronger convergence, in order to show that the limit w satisfies the
GL model (4.12)–(4.15).

Now, we shall prove the strong convergence of {gδ ∗ ∆wk} to gδ ∗ ∆w in
L2(ω × [0, T ]) for all1 ω ⊂⊂ Ω. To show this, we need the following classical
inequality; see, for instance, Lemma II.4.2, [120]):

Lemma 4.7 (Friederichs inequality). Let C be a cube in �d, and let v
belong to L2(0, T ; [H1(C)]d). Then, for any η > 0, there exists K(η, C) ∈ �
functions ϕi ∈ L∞(C), i = 1, · · · , K such that∫ T

0

‖v(t)‖2
L2(C) dt ≤

K∑
i=1

∫ T

0

(v(t), ϕi)
2
C dt + η

∫ T

0

‖∇v(t)‖2
L2(C) dt. (4.21)

Applying the above inequality with v = gδ ∗ ∆wk − gδ ∗ ∆w, and C a cube
contained in Ω, we get

1 This means for all bounded set ω such that ω ⊂ Ω.
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0

‖gδ ∗ ∆wk − gδ ∗ ∆w‖2
L2(C) dt

≤
K∑

i=1

∫ T

0

(gδ ∗ (∆wk − ∆w), ϕi)
2
Cdt + η

∫ T

0

‖∇gδ ∗ (∆wk − ∆w)‖2
L2(C)dt

= −
K∑

i=1

∫ T

0

(∇wk −∇w, gδ ∗ ∇ϕi)
2
C dt

+η

∫ T

0

‖∇gδ ∗ (∆wk − ∆w)‖2
L2(C) dt.

Using (4.20) and the fact that

‖∇(gδ ∗ ∆wk − gδ ∗ ∆w)‖2
L2(C) ≤ C(gδ, δ) ‖wk − w‖2

L2(C),

we get

lim
k→∞

∫ T

0

‖gδ ∗ ∆wk − gδ ∗ ∆w‖2
L2(C) dt = 0.

Applying (4.21) with w = wk − w, and using (4.20), we get

lim
k→∞

∫ T

0

‖wk(t) − w(t)‖2
L2(C) dt = 0. (4.22)

Now, we shall prove that w is a weak solution of (4.12)–(4.15). Integrat-
ing (4.16) from 0 to t ≤ T , we get:∫ t

0

− 1
Re

(∇wk,∇ψr) − (wk · ∇wk, ψr) dζ = −
∫ t

0

(f , ψr) dζ

+µ3
δ3

4γ

∫ t

0

(|gδ ∗ ∆wk|∇swk,∇sψr) dζ +
∫ t

0

(wk(t), ψr) − (wk(0), ψr) dζ.

(4.23)
From (4.19) and (4.20), we get

lim
k→∞

(wk(t) − w(t), ψr) = 0, and (4.24)

lim
k→∞

∫ t

0

(∇wk(ζ) −∇w(ζ),∇ψr) dζ = 0.

We now focus on the nonlinear terms in (4.23) corresponding to the convective
term in the NSE. Let C be a cube containing the support of ψr. Then:∣∣∣∣∫ t

0

(wk · ∇wk, ψr) − (w · ∇w, ψr) dζ

∣∣∣∣
≤
∣∣∣∣∫ t

0

((wk − w) · ∇wk, ψr)C dζ)
∣∣∣∣ +

∣∣∣∣∫ t

0

(w · ∇(wk − w), ψr)C dζ

∣∣∣∣ .
(4.25)
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Setting S = max
x∈C

|ψr(x)|, and using (4.17), we also have:

∣∣∣∣∫ t

0

((wk − w) · ∇wk, ψr)C dζ

∣∣∣∣
≤ S

(∫ t

0

‖wk − w‖2
L2(C) dζ

)1/2 (∫ t

0

‖∇wk‖2
L2(C) dζ

)1/2

≤ S M1/2

(∫ t

0

‖wk − w‖2
L2(C) dζ

)1/2

.

Thus, using (4.22), we get

lim
k→∞

∣∣∣∣∫ t

0

((wk − v) · ∇wk, ψr)C dζ

∣∣∣∣ = 0. (4.26)

We also have∣∣∣∣∫ t

0

(w · ∇(wk − w), ψr)Cdζ

∣∣∣∣ ≤ d∑
i=1

∣∣∣∣∫ t

0

(∂i(wk − w),wiψr)Cdζ

∣∣∣∣
and since wi ψr ∈ L2(Ω × [0, T ]), (4.20) implies

lim
k→∞

∣∣∣∣∫ t

0

(w · ∇(wk − w), ψr)C dζ

∣∣∣∣ = 0. (4.27)

Relations (4.25)–(4.27) yield:

lim
k→∞

∣∣∣∣∫ t

0

(wk · ∇wk − w · ∇w, ψr) dζ

∣∣∣∣ = 0.

We now treat the Gaussian–Laplacian term as follows:∫ t

0

(|gδ ∗ ∆wk|∇swk − |gδ ∗ ∆w|∇sw,∇sψr) dζ

≤
∣∣∣∣∫ t

0

(|gδ ∗ ∆w|∇s(wk − w),∇sψr) dζ

∣∣∣∣
+
∣∣∣∣∫ t

0

(|gδ ∗ ∆wk − gδ ∗ ∆w|∇swk,∇sψr) dζ

∣∣∣∣ .
(4.28)

We have ∣∣∣∣∫ t

0

(|gδ ∗ ∆w|∇s(wk − w),∇sψr) dζ

∣∣∣∣
≤
∣∣∣∣∫ t

0

(∇s(wk − w), |gδ ∗ ∆w|∇sψr) dζ

∣∣∣∣ ,
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and, since |gδ ∗ ∆w|∇sψr ∈ L2(Ω × [0, T ]), (4.20) implies

lim
k→∞

∣∣∣∣∫ t

0

(|gδ ∗ ∆w|∇s(wk − w),∇sψr) dζ

∣∣∣∣ = 0.

On the other hand, setting S = maxx∈C |∇ψr(x)|, and using (4.17), we get∣∣∣∣∫ t

0

(|gδ ∗ ∆wk − gδ ∗ ∆w|∇swk,∇sψr) dζ

∣∣∣∣
≤ C S

(∫ t

0

‖gδ ∗ ∆wk − gδ ∗ ∆w‖2
L2(C) dζ

)1/2 (∫ t

0

‖∇wk‖2
L2(C) dζ

)1/2

≤ C S M1/2

(∫ t

0

‖gδ ∗ ∆wk − gδ ∗ ∆w‖2
L2(C) dζ

)1/2

.

Thus, using (4.22), we get

lim
k→∞

∣∣∣∣∫ t

0

(|gδ ∗ ∆wk − gδ ∗ ∆w|∇swk,∇sψr) dζ

∣∣∣∣ = 0. (4.29)

Relations (4.28) and (4.29) yield

lim
k→∞

∣∣∣∣∫ t

0

(|gδ ∗ ∆wk|∇swk − |gδ ∗ ∆w|∇sw,∇sψr) dζ

∣∣∣∣ = 0. (4.30)

Therefore, taking the limit over k → ∞ in (4.23), and using (4.24), (4.2.1),
and (4.30), we get∫ t

0

− 1
Re

(∇w,∇wr) − (w · ∇w, ψr) dζ = −
∫ t

0

(f , ψr) dζ

+ (w(t), ψr) − (w(0), ψr) dζ + µ3
δ3

4γ

∫ t

0

(|gδ ∗ ∆w|∇sw,∇sψr) dζ.

However, from Lemma 2.3 in [121], we know that every function ψ ∈ D(Ω)
can be uniformly approximated in C2(Ω) by functions of the form

ψN (x) =
N∑

r=1

γr ψr(x) N ∈ �, γr ∈ �.

So, writing (4.29) with ψN instead of ψr, and passing to the limit as N → ∞,
we get the validity of (4.29) for all ψ ∈ D(Ω). Thus, w is a weak solution
of (4.12)–(4.15). ��

4.3 k − ε Modeling

Together with LES models other very simple models (algebraic or involving
one or two scalar equations) are used in the description of turbulent flows.
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We have seen that in the Boussinesq approximation, the problem is reduced
to predicting k′ and l. In [260] Prandtl formulated the so called “mixing
length hypothesis”. By using ideas from kinetic theory of gases, he assumed
νT proportional to the product of the scale of mean fluctuating velocity (scale
velocity) and of the mixing length (scale length). The mixing length l was
defined in an experimental way as a nondecreasing function of the distance
from the boundary. This is known as a “zero equation model”, since it involves
no equations for the evolution of νT .

In order to overcome natural limitations of the mixing length hypothesis (it
works to predict mixing layers, jets, and wakes, but not transitions from one
type to another one) more sophisticated models were developed. By observing
that the most significant scale for velocity fluctuations is

√
k′, it is possible

to derive the Kolmogorov–Prandtl (4.1) expression. The k − ε model then
predicts k′ by solving the transport equation

k′
t + u · ∇k′ −∇ ·

[(
1

Re
+

νT

σk

)
∇k′

]
− 2 νT∇su∇u = ε′,

where ε′ can be approximated – within K41 theory – by cD k
′3/2 l (the con-

stants cD and σk are empirical constants).
Since the length scale (characterizing the larger eddies containing energy)

is also subject to a transport process, it is reasonable to derive equations
for l. By observing that an equation for l does not necessarily need the mixing
length itself as a dependent variable (any combination of k′ and l will be
enough), several models have been derived. The most popular is the k − ε
model involving the turbulent energy dissipation ε′. The transport equation
for ε reads

ε′t + u · ∇ε′ = −∇ ·
[(

1
Re

+
νT

σε

)
∇ε′

]
− 2 c1ε νT

ε′

k′∇su∇u = c2ε
ε
′2

k′ ,

where again c1ε, c2ε and σε are empirical constants. Though these models are
very rough, they may be employed rather successfully after very fine tuning
of the empirical constants. For the mathematical analysis of k − ε methods,
see Mohammadi and Pironneau [239] and Coletti [67].

We will not present further details of these models (since they are outside
the primary scope of LES) but the reader should be aware of them, since they
are commonly used in CFD commercial software.

4.3.1 Selective Models

Together with the dynamic procedure of Germano [129] (that we will present
in Chap. 8 on scale-similarity models), other dynamic or selective methods
have been introduced, especially to improve the prediction of intermittent
phenomena. The fundamental idea behind these selective models is to mod-
ulate the subfilter-scale model so as to apply it only when the assumptions
underlying the model are satisfied. One then needs to know:
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(a) when and where the smallest scales of the exact solution are not resolved;
(b) where the flow is fully developed turbulence.

The assumptions that can be made are generally of a very deep and precise
mathematical nature. We will briefly introduce a couple of methods, developed
by the group of Cottet [75, 78, 77, 76] in recent years, since they involve precise
mathematical ideas and methods.

The Anisotropic Selective Model

The starting point of this method, introduced in Cottet [75] and Cottet and
Wray [78], is to consider the balance equation for the vorticity field ω =
∇× u:

ωt + u · ∇ω − 1
Re

∆ω = ω · ∇u.

Multiplying by ω and integrating by parts (recall that ∇ · ω = 0), we ob-
tain

1
2

d

dt
‖ω‖2 +

1
Re

‖∇ω‖2 =
∫

Ω

ω · ∇uω dx =
∫

Ω

ω · ∇suω dx. (4.31)

The term on the right-hand side is the stretching term and the lack of suitable
estimate on it can also be seen as a possible source of nonsmooth solutions
for the Navier–Stokes equations.

Formula (4.31) has as an easy consequence that the enstrophy ‖ω‖ may
increase when the vorticity is aligned with directions corresponding with pos-
itive eigenvalues of ∇su. By denoting by (∇su)+ the positive part of ∇su we
can also write∫

Ω

ω · ∇uω dx =
∫

Ω

3∑
i,j=1

ωi(∇su)ijωj ≤
∫

Ω

3∑
i,j=1

ωi(∇su)+ijωj.

In this formula the positive part of a tensor means the tensor that is obtained
after diagonalization and replacement of negative eigenvalues with zero. The
idea developed in [75, 78] is to limit the enstrophy increase, by introducing an
eddy viscosity tensor proportional to (∇su)+. Since the sum of eigenvalues of
∇su is zero (∇·u = 0) there is also another natural candidate −(∇su)−, and in
Cottet, Jiroveanu, and Michaux [76] there is a physical-geometric motivation
for the second choice. The proposed eddy viscosity is then

νT = −(CSδ)2(∇su)−.

In this case one computational problem is that this requires a possibly ex-
pensive diagonalization of the matrix ∇su at each point. Another approach
that avoids diagonalization is developed in [75] (together with a possible im-
plementation). After extensive further development [78], this model becomes
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∇ · τ (u) =
c

δ4

∫ {
[u(x) − u(y)] · ∇ζ

(
x − y

δ

)}
+

[u(x) − u(y)] dy,

where
{f}+ := max {f, 0} ,

while ζ is a filter function, with spherical symmetry satisfying a moment
condition ∫

xkxlζ(x) dx = δkl.

The above method can be seen as a modified Gradient LES model, in which
the energy backscatter is controlled. The advantage of this method is that
it allows energy to dissipate in one or more directions while controlling the
backscatter in other directions.

The Selective Smagorinsky Model

The dynamic of vorticity is twofold: the effect of the stretching term in (4.31)
may increase the value of vorticity and may also change the direction of the
vorticity vector. The control of the growth of vorticity and its role in the global
existence of smooth solutions (for the Euler equations, too) was introduced
by Beale, Kato, and Majda [18] and developed also by Beirão da Veiga [19].
In particular it can be proved that the condition

ω ∈ Lr(0, T ; Ls(Ω)) for
2
r

+
3
s

= 2, 1 ≤ r ≤ 2, (4.32)

implies the full regularity of the solutions to the NSE (compare it with (2.31)
of Chap. 2 and see also Chap. 7, p. 172). One first idea is then to detect the
regions where the vorticity is large (in the sense of Lp-norms) and to put an
EV tensor that vanishes outside these regions.

A new LES-model, whose introduction and implementation can be found
in [76], is based on new geometric insight into the problems of regularity for
the NSE. By using some exact formulas derived in Constantin [72], Constantin
and Fefferman [73] introduced a new criterion for regularity that involves only
the vorticity direction (the magnitude is not relevant). This results is related to
the study of bending of vortex lines (lines everywhere tangent to the vorticity
field) and on the stretching of vortex tubes (tubes made by vortex lines). These
are phenomena of pure 3D nature, since they are absent in the dynamics of
2D fluids.

Another model of Cottet, Jiroveanu, and Michaux [76] is a variant of the
Smagorinsky model, in which the turbulence model is applied only in regions
of intense vortex activity. The idea of controlling the behavior of vorticity to
ensure regularity of solutions is connected with the outstanding problem of
global existence of smooth solutions for the 3D Navier–Stokes equations.

The results of Constantin and Fefferman were improved in Beirão da Veiga
and Berselli [22]. As a particular case they imply the following theorem:
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Theorem 4.8. Assume that there exist positive constants Ω and ρ such that
in the region where the vorticity magnitude at two points x and y is larger
than Ω,

∃C > 0 such that sin θ(x,y, t) ≤ C |x − y|1/2, ∀ t ∈ [0, T ],

where θ(x,y, t) is the angle between the vorticity vectors at the points x and
y, at time t. Then the NSE have a unique regular solution on [0, T ].

This result gives a new criterion to detect regions of turbulent behavior: to
compute the angle between the vorticity at a given grid point and the average
vorticity at the six closest neighboring points. (Note that everything could be
done at a continuous level, but we prefer to show directly a possible numerical
implementation; see also David [85].) We define

ωm(x, t) =
1
6

3∑
i=1

ω(x + ∆ixi, t) − ω(x − ∆ixi, t),

where ∆i is the grid-width in the direction of xi. The average angle θm is then
defined as

θm(x, t) = arcsin
ω(x, t) × ωm(x, t)
|ω(x, t)| |ωm(x, t)| .

The next step is to define the function filter

Ψ(x, t) =

⎧⎨⎩
1, if β0 ≤ βm ≤ π − β0

0, otherwise,

where β0 is some threshold angle (a common value of β0 is π/12). Finally the
eddy viscosity for the selective Smagorinsky model is expressed by

νT = Ψ(x, t)CSδ2|∇su|.

4.4 Conclusions

Eddy viscosity models are inherently dissipative, see Fig. 3.2, and do not
allow for backscatter of energy, Sect. 3.5. This dissipativity is not a significant
detriment in flows in which there is a large power input and calculation is over
a moderate timescale. Thus, they have proven to be very useful for calculating
the statistics of turbulent flows in industrial settings. On the other hand, they
are not the models of choice if accurate representation of the mean velocity
and pressure is needed or for calculations over a long time interval or for
problems with delicate energy balance.

The diffusivity of eddy viscosity models retards separation and transition
even over moderate time intervals. Thus, one main path to improvement (ex-
plored in this chapter) is formulas for the turbulent viscosity coefficient which
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are more localized in space. We have seen that simple changes in the turbulent
viscosity coefficient lead to large improvement in performance. Interestingly,
eddy viscosity, the oldest idea in turbulence modeling, is of great current in-
terest due to new models whose diffusivity acts only on the smallest resolved
scales (and is thus localized in scale-space). The idea occurs very naturally in
spectral methods (in Tadmor’s spectral vanishing viscosity method [226].) Re-
cent extensions to general variational methods in the work of Guermond [144],
Hughes’ Variational Multiscale method [160], and in [204] are presented in
a later chapter. Properly calibrated, eddy viscosity models continue to be the
workhorse of industrial turbulence calculations. Improvements in eddy vis-
cosity models, such as development of models localized in both physical and
scale-space, are of great practical importance.

Accurate solution of turbulent flows will likely be attained only as a syn-
thesis of many good ideas, and eddy viscosity models continue to make a key
contribution in practical problems. An important example of a useful synthe-
sis occurs with, so-called, mixed models. In mixed models, an eddy viscosity
term is added to a dispersive model to improve its stability properties. For
example, the eddy viscosity hypothesis applies most sensibly to the Reynolds
stress term u′u′T . Thus it is certainly physically sensible to combine eddy
viscosity models for the Reynolds stress term with a dispersive model for the
other terms in the expansion of the subfilter-scale stress tensor. At present,
determining the right combination is an important open problem.



5

Uncertainties in Eddy Viscosity Models
and Improved Estimates

of Turbulent Flow Functionals

5.1 Introduction

Important decisions are made and significant designs are produced based on
turbulent flow, which are simulated using various models of turbulence. Even
when using the model which current practice considers best for a particular
application, often the reliability of the model’s predictions for the specific
application is not assessed. This is particularly troublesome because solutions
of turbulence models can display sensitivity with respect to the user-selected
model parameters in addition to the sensitivity with respect to the upstream
flow, subgrid model, and numerical realization of it (reported by Sagaut and
Lê [268]).

For example, calculating the force a fluid exerts upon an immersed body,
such as lift or drag, involves first solving the NSE

ut + ∇ · (uuT ) + ∇p − 2
Re

∇ · (∇su) = f ,

∇ · u = 0,

with appropriate initial and boundary values. If B denotes the boundary of
the immersed body, the force must be calculated on B via

force on B =
∫

B

n ·
[
p �− 2

Re
∇su

]
dS, (5.1)

where n is the outward unit normal to B. This requires accurate estimation of
p and derivatives of u on the flow boundary – a problem harder than accurately
predicting the turbulent velocity itself. The problem simplifies a bit if only
time-averaged forces on B are needed. In this case, however, a well-calibrated
turbulence model would likely give the most economical prediction.

The basic approach used for turbulent flows has been to replace the NSE by
a turbulence model and then insert the couple velocity–pressure predicted by
the turbulence model into the right-hand side of the functional such as (5.1).
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Uncertainties arise immediately due to the typical sensitivity of such models to
the model’s input parameters. Perhaps more importantly, turbulence models
approximate flow averages. Thus, all the information on fluctuations is lost
in them. However, the small-scale fluctuations can have a determining role
in functionals such as (5.1). Mathematically, this is because the derivatives
occurring in (5.1) overweight velocity changes occurring across small distances.
(It can be argued that an example is drag in the flow over a dimpled vs. smooth
golf ball. In this case, the dimples change the flow geometry below the O(δ)
length-scale, yet produce an O(1) change in the drag.) Indeed, drag reduction
strategies injecting small amounts of microbubbles or polymers near a body
are, in part, based on the expectation that a little power input to alter the
small scale flows can have a large effect upon the global drag.

We shall see that the sensitivity equation approach has the great promise of
giving computable quantitative estimates of the local sensitivity of the models
predicted flow field to variations in the input parameters. Thus, a sensitivity
calculation will show over which regions the predicted velocities are reliable
and hence believable and over which regions those predicted velocities are
highly sensitive, and hence should be viewed with greater suspicion. We focus
on the case of sensitivity with respect to the user-selected length scale δ. These
ideas of Anitescu, Layton, and Pahlevani [8] were tested in Pahlevani [248].
The reason for this focus is that the sensitivity of the flow with respect to
variations in δ can be used to improve the estimate of flow functionals, such
as lift and drag, which can depend strongly upon the unknown and unresolved
turbulent fluctuations!

5.2 The Sensitivity Equations of Eddy Viscosity Models

The continuous sensitivity equation approach is becoming increasingly impor-
tant in computational fluid dynamics but is not yet a common tool in LES
of turbulence. This section will apply the sensitivity idea to find the contin-
uous sensitivity equation with respect to variations in the length scale δ. For
a general treatment of sensitivities and applications to other flow problems,
see (among many interesting works) [37, 282, 147].

Suppose a local spatial filter gδ with radius δ has been selected. Filtering
the NSE, leads to the problem of closure. One very common class of closure
models is based on the Boussinesq or EV hypothesis (see Chaps. 3 and 4
for more details). The model we consider aims at finding the approximate
large-scale velocity w(x, t) and pressure q(x, t) satisfying

wt + ∇ · (wwT ) + ∇q −∇ ·
([ 2

Re
+ νT (δ,w)

]
∇sw

)
= f , (5.2)

∇ ·w = 0,

where f is the space-filtered body force, and νT is the eddy viscosity coefficient,
which must be specified to select the model. As an example, the Smagorinsky
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model [277], while currently not considered generally the best, is perhaps the
most commonly used model and is given by the eddy viscosity choice

νT = νSmag(δ,w) := (CSδ)2 |∇sw|, CS ≈ 0.17. (5.3)

For other EV models, the reader is referred to Chaps. 3 and 4. Once CS ,
the Smagorinsky constant, initial and boundary conditions are specified, for
a given δ, the equations (5.2) and (5.3) uniquely determine a solution (w, q)
implicitly as a function of δ.

Definition 5.1. Let (w, q) be the solution of (5.2), (5.3). The sensitivity of
(w, q) to variations in δ is defined to be the derivatives of (w, q) with respect
to δ, (

wδ :=
∂w
∂δ

, qδ :=
∂q

∂δ

)
.

It is easy to derive continuous equations for the sensitivities by implicit dif-
ferentiation of (5.2) and (5.3) with respect to δ. Doing so, gives the equations

wδ,t + ∇ · (wwT
δ + wδwT ) − Re−1∆wδ + ∇qδ

−∇ ·
([

∂

∂δ
νT (δ,w) +

∂

∂w
νT (δ,w) · wδ

]
∇sw + νT (δ,w)∇swδ

)
=

∂f
∂δ

, (5.4)

∇ · wδ = 0. (5.5)

Remark 5.2. We have to be careful in calculating the term
∂

∂w
νT (δ,w) · wδ.

It should be understood in the sense of a Gateaux derivative when (as in the
Smagorinsky model (5.3)), νT involves differential operators. For example, by
direct calculation,

∂

∂δ
(|∇w|2) =

∂

∂δ
(∇w : ∇w) = (∇wδ : ∇w + ∇w : ∇wδ) = 2∇wδ : ∇w,

rather than 2|∇w|∇wδ, as the expression (5.4) would seem to suggest.

Thus, once the large eddy velocity and pressure, (w, q), are calculated, the
corresponding sensitivities can then be found by solving a linear problem for
(wδ, qδ), which is precisely the nonlinear LES model linearized about (w, q).
Thus, sensitivities can be quickly and economically calculated by the same
program used to calculate (w, q).

For the Smagorinsky model, we have νT = (CSδ)2|∇sw|. Thus, the brack-
eted term is, by direct calculation,

d

dδ

[
νT (δ,w(δ))

]
=

∂νT

∂δ
+

∂νT

∂w
·wδ,

= 2 C2
Sδ|∇sw| + (CSδ)2

( ∇sw
|∇sw|

)
: ∇swδ.
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5.2.1 Calculating fδ = ∂
∂δ

f

If the body forces acting on the flow vary slowly in space, fδ is negligible.
Otherwise, the right-hand side of (5.4), fδ, can play an important role in
the sensitivity equation, since it incorporates information about body force
fluctuations. When f is not smooth, the exact value of fδ will depend on the
precise filter specified. When f is defined by convolutions, extending f by zero
off the flow domain and then defining

f =
∫
Rd

δ−dgδ

(
x′

δ

)
f(x − x′) dx,

where gδ(x) is the chosen filter kernel, then f δ can be calculated explicitly.
When f is defined using differential filters (introduced in the pioneering

work of Germano [127, 126]), a small modification is needed, which depends
on the exact differential filter specified. Two interesting differential filters are
defined by solving the Helmholtz problem for f :{

−δ2∆f + f = f in Ω,

f = 0 on ∂Ω,
(5.6)

and by solving the shifted Stokes problem for f :⎧⎪⎨⎪⎩
−δ2∆f + f + ∇λ = f in Ω,

∇ · f = 0 in Ω,

f = 0 on ∂Ω.

(5.7)

The second differential filter (5.7) preserves incompressibility and is thus in-
teresting in spite of its extra cost over the first.

With the first filter f = (−δ2∆+�)−1f , we can differentiate implicitly with
respect to δ, to derive an equation for fδ:

(−δ2∆ + �) fδ = 2δ∆f = (via (5.6)) =
(
−2

δ

)
(f − f).

Thus,

fδ =
(
−2

δ

)
(f ′).

On the contrary, the only way to calculate wδ is to solve the linear PDEs (5.4)
and (5.5). Analogously, we obtain the initial condition for wδ

wδ(x, 0) = u0,δ(x) =
(
−2

δ

)
(u′

0)

and then we can try to solve the initial value problem (5.4) and (5.5).
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5.2.2 Boundary Conditions for the Sensitivities

Boundary conditions for sensitivities must be specified. The most interesting
and important cases are sensitivity with respect to the (modeled) upstream
conditions and the (modeled) outflow conditions, see Sagaut and Lê [268]. At
this point, a mathematical formulation of the former is still very unclear while
there are very many options for the latter. Thus we will consider here only
boundary conditions for the sensitivities at solid walls.

With a differential filter like (5.6) and (5.7), the boundary conditions for
the sensitivities are clear since there is no error and no variability with respect
to δ in the conditions for w on the wall: wδ = 0 on the boundary.

Some slight modifications of the wall models are necessary to compute sen-
sitivities when near wall models are used. These are usually associated with
averaging by convolutions when filtering through a wall must be performed,
see Chap. 10 for more details. Many near wall models/numerical boundary
conditions are possible. For specificity and clarity, we treat the simplest ones
considered in Chap. 10, in which the large structures that action on the bound-
ary are modeled by no penetration and slip-with-friction conditions:

w · n = 0 and β(δ, Re)w · τ j + n ·
( 2

Re
∇sw

)
· τ j = 0 on ∂Ω,

where n is the unit normal to the boundary and τ 1, τ 2 are a system of unit
tangent vectors on the boundary. Implicit differentiation with respect to δ
gives the boundary conditions for the sensitivities

wδ · n = 0 on ∂Ω,

β(δ, Re)wδ · τ j + n ·
( 2

Re
∇swδ

)
· τ j = −βδ (δ, Re)w · τ j on ∂Ω.

It is reasonable (see Chap. 10) to suppose that, at fixed Re, βδ < 0, since
β(δ) increases monotonically to infinity as δ → 0 (that is, β(δ) decreases as
δ increases, see also Fig. 2 on p. 1140 in [178]). Thus, slippage in the flow
velocity w acts to decrease the slippage in the sensitivities when they are
aligned and increase it when they are opposed.

5.3 Improving Estimates of Functionals of Turbulent
Quantities

Suppose (optimistically) that the LES solution w implicitly defines a smooth
function of δ, w = w(δ), with the property that

w(δ) → u as δ → 0.

This is a minimal analytic condition for consistency (known as “limit consis-
tency”) for an LES model which, nevertheless, has so far been proven to hold
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for only a few LES models, such as the Smagorinsky model, the S4 model, the
zeroth order model, and the Stolz–Adams approximate deconvolution model
in Chap. 8.

Let us suppose that a functional J (for example drag, lift, etc.) is well-
defined for LES velocity and pressure. If J is smooth (say of class C1), then
the composition

δ �→ J(w(δ)) = J (δ)

defines a smooth map. The value J (δ) = J(w(δ)) is computable, while J(u) =
J(w(0)) = J (0) is sought. Since δ is small, the linear approximation to J (0) is
justified. The linear approximation to J (δ) yields a first-order approximation
to J(u)

J(u) ≈ J(w(δ)) − δ J ′(w(δ)) · wδ. (5.8)

The increment δ J ′(w(δ)) incorporates effects of unresolved scales on J(u)
and is computable once the solutions sensitivities wδ are calculated.

It may happen that the functional J itself is regularized, so J(u) is ap-
proximated by a δ-dependent approximation

J(δ,w(δ)).

Accordingly, (5.8) is modified to

J(u) ≈ J(δ,w(δ)) − δ (Jw(δ,w(δ)) ·wδ + Jδ(δ,w(δ))) ,

where Jw and Jδ denote the partial Gateaux derivative of J(δ,w) with respect
to w and δ, respectively. For further details on partial derivatives of functionals
defined on infinite dimensional linear spaces, see Rudin [266].

We now give a couple of examples to show the context in which we can
use this approach to improve estimates on functionals involving turbulent
quantities, as we can find in real life applications.

Example 1: Lift, drag, and other forces on boundaries in turbulent
flows.

In many applications, forces exerted by fluid on boundaries must be estimated.
In this case, the functional is given by

J(u, p, â) :=
∮

B

n ·
[
p �− 2

Re
∇su

]
· â dS, (5.9)

where â is a unit vector and B is the boundary of the immersed body. If â
points in the direction of motion, J(u, p, â) represents drag1, while if â points
in the direction of gravity, J(u, p, â) represents lift.
1 It is interesting to note that in the 2D case the problem of shape optimization

– known also as the submarine problem – leads to very interesting purely the-
oretical results on some basic uniqueness questions for the Stokes problem, see
Šverák [292]. In fact, the problem of finding the shape that minimizes drag al-
lowed the author to precisely find the hypotheses that give in 2D the equality
between H1

0,σ and the closure of V in H1
0 , see Sect. 2.4.1.
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Remark 5.3. For general surfaces B, the straightforward approximation of
J(u, p, â) by J(w, q, â) is not so clear because (see, for example, Sagaut [267]),
while ideally w(δ) → u as δ → 0, q(δ) → p + 1/3 Trace [τ ], where τ is the
subfilter-scale stress tensor

τ ij := uiuj − uiuj .

Thus, q(δ) is not, for general surfaces B, a direct approximation to p and its
use in (5.9) could skew the estimate of the force on a general surface B. For
a wall B, the situation is clearer. Indeed, let k(v) := 1/2|v|2(x, t) denote the
kinetic energy distribution of a velocity field v. We have

q(δ) = p + (2/3)(k(u) − k(u)). (5.10)

Since w approximates u, the excess pressure contribution to q from k(u) is
computable and thus correctable using k(w) but that contributed by k(u)
is not easily calculable for general surfaces B. If B is a solid wall and the
averaging operator, such as (5.6) and (5.7), preserves the no-slip condition,
then k(u) = 0 on B and k(u) = 0 on B, too. If the averaging operator does
not preserve zero boundary conditions (such as filtering by convolution with
constant averaging radius), then k(u) does not in general vanish on B.

To proceed, for (5.9) and other functionals involving boundary pressures,
there are two cases that must be considered. The first case is when

q(δ)
∣∣
B
→ p

∣∣
B

as δ → 0.

In this case, since the boundary-force functional J(w, q), given by (5.9) (sup-
pressing, to simplify notation, the explicit dependence on â) is a linear func-
tional with respect to u and p, J ′ = J and we obtain the corrected approxi-
mation to the force on B:

J(u, p) ≈ J(w, q) − δJ(wδ, qδ) = J(w − δwδ, q − δqδ)

=
∮

B

n ·
[
(q − δqδ) �− 2

Re
ν ∇s(w − δwδ)

]
· â dS.

The second case is when k(u) is nonnegligible on B and its effect in q
∣∣
B

must be adjusted for. With the given information, the best available estimator
of
(
k(u)

)∣∣
B

is

k(u)
∣∣∣
B
≈ k(w − δ wδ)

∣∣∣
B

,

which is computable. This gives the computable approximation to the pressure
on the wall, from (5.10),

p̃(δ) := q(δ) − 2
3

(
k(w) − k(w − δ wδ)

)
.
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Let p̃δ denote
∂

∂δ
p̃(δ). Then, p̃δ is computable in principle from the above for-

mula and implicit differentiation (although it is not an agreeable calculation).
In this second case, the approximation to J(u, p) is∮

B

n ·
[
(p̃ − δ p̃δ) �− 2

Re
∇s(w − δ wδ)

]
· â dS.

Again, we stress that at this point it is not known if k(u) �= 0 on B has
a significant or negligible effect!

Example 2: Flow matching.

Flow matching, needs four steps: (1) a desired velocity field u∗ is specified,
(2) the flow is simulated, (3) a functional such as

J(u) :=
1
2

∫
Ω×(0,T )

|u− u∗|2 dxdt

is calculated, and (4) the design/control parameters are used to drive J(·) to
its minimum value. Thus, one aspect of flow matching involves getting the
best estimate of J(·); this is challenging in the case of a turbulent flow.

Abstractly, given the LES velocity w and its sensitivity wδ, (5.8) provides
an estimate of J(u) improving the estimate given by J(w). Since in this case
J(·) is quadratic, it is straightforward to calculate

J ′(w)wδ =
∫

Ω×(0,T )

(w − w∗) ·wδ dx dt,

giving the approximation

J(u) ≈
∫

Ω×(0,T )

1
2
|w − u∗|2 + δ(w − u∗) ·wδ dxdt.

5.4 Conclusions: Are u and p Enough?

It is important to keep in mind that the goal of LES is not to produce colorful
animations, but rather reliable predictions of important physical quantities.
Often, this means estimating functionals accurately and giving an assessment
of the reliability of the LES prediction. In all cases, the flow sensitivities pro-
vide useful and possibly essential information about the quality of the simu-
lation and predictions obtained from it. Possibly more importantly, they can
be used to improve those predictions! When LES codes are designed from the
start with the idea of producing both velocities and sensitivities, the increase
in computational cost is negligible over just computing velocities on the same
mesh [248, 38].
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In addition, a key problem is that we currently do not know all the charac-
teristic features of the filtered field (independently from the modeling error);
therefore, the sensitivity analysis seems to be of primary importance.

Apart from these practical facts it should be emphasized that, from the
theoretical point of view, the calculation of sensitivity poses serious mathemat-
ical problems. In order to better understand its role a more detailed analysis,
involving also filters that are not of an approximate deconvolution or differ-
ential type, seems necessary. The ideas we present in this chapter should be
applied to each LES model the reader tries to use, implement, understand or
improve!

We have the feeling that the role sensitivity calculations will play in LES
will increase. In addition, the reader should be aware that this is not the only
source of error, when comparing “true” functionals and flows with computed
ones. A comparison of the relative magnitude of uncertainties arising from
sensitivity of the model should be done with both (1) the commutation error
(see Chap. 9) and (2) the boundary effects (see Chap. 10). Sensitivity is the
first accuracy condition that the practitioner should keep in mind when trying
to deduce quantitative and also qualitative properties of the “true” flow, from
those of the LES simulated ones.
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Advanced Models
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Basic Criteria for Subfilter-scale Modeling

6.1 Modeling the Subfilter-scale Stresses

Over long time intervals, and especially in geometrically simple domains, the
closure model selected for the subfilter-scale stress (SFS) tensor

τ(u,u) := (uuT − uuT ) ≈ S(u,u) (6.1)

is extremely important for an accurate simulation.
A related formulation is to incorporate the mean normal subfilter-scale

stresses into the pressure by

p∗ :=
1
3

trace τ (u,u), τ ∗(u,u) := τ (u,u) − p∗�.

Then, the closure problem is to find a tensor S∗(u,u) with zero trace, which
approximates τ ∗(u,u). Some closure models arise naturally by approximating
τ (u,u) and some, such as eddy viscosity models, by approximating τ ∗(u,u).
At present there are many, many SFS models that have been proposed (well
surveyed in Sagaut [267]) and a “universal” model is yet to be found.

The ultimate goal is a SFS model with the property that discretizations
without either explicit or implicit dissipation produce simulations with high
accuracy in the large eddies over long time intervals. This goal has not yet
been attained, so an intermediate goal has been to find SFS models for which
S(u,u) replicates important features of the true SFS stresses. Before pre-
senting recent models, we will therefore summarize some important features
sought in a model S(u,u). So far, models satisfying all these “easier” condi-
tions have been elusive!

Ignoring boundaries for the moment, once the model (6.1) is chosen, the
solution of the new equation is naturally no longer the true filtered velocity and
pressure but rather an approximation w to u, induced by (6.1) and satisfying:

wt + ∇ · (w wT ) − ν∆w + ∇q + ∇ · S(w,w) = f , (6.2)
∇ ·w = 0, (6.3)
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subject to an initial condition w(x, 0) = u0(x), in Ω, and periodic boundary
conditions.

6.2 Requirements for a Satisfactory Closure Model

Since there are many possible SFS models, any mathematical, physical and
experimental guidance upon model selection is valuable. Much of this guidance
comes from basic properties of the true SFS stresses τ , and the true averages
u, of the true solution of the Navier–Stokes equations that should be preserved
by S and w respectively.

We list here some relevant properties.

Condition 1: Reversibility. (Germano et al. [129].)
The true SFS stresses τ (v1,v2) are reversible, meaning

τ (−v1,−v2) = τ (v1,v2).

Thus, one important condition is that the approximate SFS stresses be re-
versible:

S(−v1,−v2) = S(v1,v2). (6.4)

It’s worth noting that (6.4) in a sense means that LES should seek a disper-
sive model rather than a dissipative model since eddy viscosity models are
irreversible. Specifically, in eddy viscosity models S(v1,v2) = −νT (v1)∇sv2.
Since νT (v1) = νT (−v1) ≥ 0, S(−v1,−v2) = −S(v1,v2).

Condition 2: Realizability. (Sagaut [267] p. 54, Ghosal [134], and Vreman,
Geurts, and Kuerten [308].)
If the filter kernel is nonnegative, g(x) ≥ 0 for all x, then the true SFS stresses
are positive semi-definite:

ξT τ (u,u) ξ ≥ 0, for all ξ ∈ �3.

Thus, it is natural to impose definiteness as an algebraic condition on any
model sought:

ξTS(u,u) ξ ≥ 0, for all ξ ∈ �3. (6.5)

Realizability is a simple and clear condition – but its significance in the final
model is not well understood. This is because div (τ (u,u)) occurs in the model
rather than τ (u,u). Thus, any shift of S(u,u) by a constant diagonal tensor
does not change the final model.

This condition (6.5) also becomes less clear if the large scales are defined
by techniques other than explicit filtering, or if the kernel changes sign, as
with sharp spectral cutoff.

Condition 3: Finite kinetic energy. (Layton [203], Iliescu et al. [169] and
John [176].)
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Young’s inequality for convolutions implies immediately that 1
2

∫
Ω
|u|2dx ≤

C 1
2

∫
Ω
|u|2dx, which is bounded by problem data. Since w ∼= u, it is natural,

even essential, that the kinetic energy in the model does not blow up in finite
time for general problem data

1
2

∫
Ω

|w|2dx ≤ C∗ < ∞,

where C∗ = C∗ (problem data) is bounded uniformly in δ.
There are many models for which practical tests have reported stability

problems which are typically “corrected” by the addition of enough ad hoc,
extra eddy viscosity to prevent blow up. See [175, 169] for an example. Thus, if
a model has the correct kinetic energy balance, such extra terms can be added
to increase its accuracy rather than enforce stability. These considerations lead
naturally to the next condition.

Condition 4: A lucid global energy balance relation. (Layton and
Lewandowski [210, 204].)
The connection between the most general mathematical description of fluid
flow and the physics of fluid motion is through the global energy inequality
for the NSE. Define (for simplicity assume that |Ω| = 1)

kNSE(t) :=
1
2

∫
Ω

|u|2 dx, εNSE(t) :=
∫

Ω

2ν |∇su|2 dx

and P (t) :=
∫

Ω

f · u dx.

The energy inequality states

kNSE(t) +
∫ t

0

εNSE(t′) dt′ ≤ kNSE(0) +
∫ t

0

P (t′) dt′.

The associated necessary condition is that the solution of the model (6.2),
(6.3) satisfies a related global energy balance

kmodel(t) +
∫ t

0

εModel(t
′) dt′ ≤ kmodel(0) +

∫ t

0

PModel(t′) dt′, (6.6)

where, as δ → 0,

kmodel → kNSE , εModel → ε, and PModel → P.

Condition 5: Modeling consistency.
In computational studies this is often called accuracy (a misnomer) and is
assessed experimentally as follows. A velocity field u is obtained either from
a moderate Reynolds number DNS or from experimental data and u is explic-
itly calculated. Next, the modeling consistency is evaluated by calculating

‖τ (u,u) − S(u,u)‖.
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These are called a priori tests in the LES literature, implying that there
is no actual LES modeling (such as, eddy viscosity) used in the numerical
simulations, all the data being obtained from a DNS (more details are given
in Chap. 12).

Important analytic studies of consistency can (and should) also be ob-
tained as follows: for the fluctuating part of u, model consistency should be
expressed by the total model possessing a smoothing property.

For the mean field/smooth components of u a reasonable condition is that

‖τ (u,u) − S(u,u)‖ ≤ C(u) δα for u smooth, for some α ≥ 2.

The reason for the restriction α ≥ 2 is that, for smooth u, ‖τ (u,u)‖ ≤
C(u)δ2, so α = 2 is minimal for consistency.

The third expression of consistency is for a Leray–Hopf weak solution u
of the Navier–Stokes equations∫ T

0

‖τ (u,u) − S(u,u)‖2dt → 0 as δ → 0.

Condition 6: Existence of solutions for large data and long times.
It is known that global-in-time weak solutions u of the Navier–Stokes equa-
tions exist for large data and arbitrary Reynolds’ numbers; Galdi [121].
A model for w approximating u = gδ ∗ u should minimally replicate this
property. (In fact, since u is more regular than u, the model for w should
have more agreeable mathematical properties than the Navier–Stokes equa-
tions.)

Condition 7: Smoothing.
Given a weak solution u to the Navier–Stokes equations and a smooth filter
gδ, the true local averages satisfy

u ∈ C∞(Ω), for each t > 0.

Since w ∼= u, a reasonable (and minimal) condition is that the solution w to
the model is regular enough that, for δ > 0,

• the model’s weak solution w is a globally unique strong solution, and
• the model’s energy inequality (6.6) is actually an energy equality.

Condition 8: Limit consistency. (Layton and Lewandowski [204, 209].)
As δ → 0,u = gδ ∗ u → u, a weak solution of the NSE. Thus, two minimal
conditions (the second studied in [204]) are

• as δ → 0, there is a subsequence δj such that w(δj) → u, a weak solution
of the NSE, and

• if the NSE weak solution u is regular enough to be unique,w → u as δ → 0.
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Condition 9: Verifiability (Layton and Kaya [204, 186].)
Since accuracy of a model is assessed experimentally by checking that ‖τ (u,u)
−S(u,u)‖ is small, it is necessary that ‖τ (u,u)−S(u,u)‖ small implies that
‖u− w‖ is small. In other words, minimally

‖u− w‖L∞(0,T ;L2(Ω)) ≤ C‖τ (u,u) − S(u,u)‖L2(0,T ;L2(Ω))

(+ Terms that → 0 as δ → 0).

Condition 10: Accuracy. (Layton and Lewandowski [209].)
For a weak solution u of the NSE,

‖u− w‖ → 0 as δ → 0

with some provable rate (at least in favorable cases).

Condition 11: Important experimental conditions.
In experiments with a minimal of algorithmic or model tuning, the model’s
solution should replicate

• the k−5/3 energy spectrum of homogeneous, isotropic turbulence with ap-
propriately modified kc,

• statistics of turbulent channel flow (Moser, Kim, and Mansour [242], see
also Fischer and Iliescu [106, 165]), and

• some important (and as yet not agreed upon) functionals of turbulence
driven by interaction of a laminar flow with a more complex boundary.

Condition 12: Frame invariance. (Speziale [279]).
Since the Navier–Stokes equations are themselves frame invariant, it is natural
to impose this as a reasonable condition upon any reduced system. Imposing
frame invariance gives some structure to the (very difficult) area of model-
ing non-Newtonian fluids. It has also given insight into conventional turbu-
lence models; Speziale [279]. For a good exposition on frame invariance, see
the books of Sagaut [267], Pope [258], and Mohammadi and Pirroneau [239].
Frame invariance has three component parts: translation invariance, Galilean
invariance, and rotation invariance. We consider the first two on a homoge-
neous model:

wt + ∇ · (wwT ) − ν∆w + ∇q + ∇ · S(w,w) = 0 and (6.7)
∇ ·w = 0.

Translation Invariance

Definition 6.1 (Translation invariance.). Let Z be a fixed but arbitrary
constant vector. Let y = x+Z, W(y, t) = w(x, t), and Q(y, t) = q(x, t). The
model (6.7) is translation invariant if W(y, t) is a solution whenever w(x, t)
is a solution.
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It is easy to check that the Navier–Stokes equations (the case S = 0 in the
model (6.7)) are translation invariant.

Proposition 6.2. Let S ≡ 0 so (6.7) reduces to the Navier–Stokes equations.
Then, (6.7) is translation invariant.

Proof. By changing variables, we find

∂w
∂xi

=
∂v
∂yi

.

Thus, trivially,

wt + ∇x · (w wT ) − ν∆xw + ∇xq = Wt + ∇y · (WWT ) − ν∆yW + ∇yQ

and 0 = ∇x · w = ∇y · W. ��
This proposition implies that (6.7) is translation invariant provided that the
model for τ (u,u) itself is too.

Proposition 6.3. Suppose the averaging process is translation invariant.
Then, with y = x + Z, Z ∈ R3, and U(y, t) = u(y, t),

∇x · τ(u(x, t),u(x, t)) = ∇y · τ(U(y, t),U(y, t)).

The model (6.7) is translation invariant if and only if whenever y = x+Z, Z ∈
�

3

∇x · S(w(x, t),w(x, t)) = ∇y · S(W(y, t),W(y, t)).

A sufficient condition is that whenever y = x + Z, Z ∈ �3,

S(w(x, t),w(x, t)) = S(W(y, t),W(y, t)).

Proof. Since ∇x = ∇y, this is clear. ��
Galilean Invariance

Definition 6.4 (Galilean invariance). Let Z be a fixed but arbitrary con-
stant vector. Let y = x+Z t and v(y, t) = w(x, t). The model (6.7) is Galilean
invariant if v(y, t) is a solution whenever w(x, t) is a solution.

Let us now consider the shift by a constant velocity y = x+Zt, where Z ∈ �3

is the fixed but arbitrary velocity vector. This corresponds to a shift of the
velocity w by a constant Z. Similarly to the previous case it is easy to prove
the following proposition (see [239] for its proof).

Proposition 6.5. The transformation y = x + Z t leaves the Navier–Stokes
equations unchanged.
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It is important to note that the space-filtered Navier–Stokes equations are
invariant under a shift y = x + Z t as well. This follows since, provided that
averaging is exact on constants,

∇ · τ(u + Z,u + Z) = ∇ · ((u + Z)(u + Z) − (u + Z) (u + Z))
= ∇ · [(uu − uu) + uZ + Zu + ZZ − uZ + Zu − Z Z]
= ∇ · (uu − uu)
= ∇ · τ(u,u).

Definition 6.6. The model (6.7) is Galilean invariant if

∇ · S(w + Z,w + Z) = ∇ · S(w,w)

for any Z ∈ �3 and any w that is a solution of (6.7).

We consider four examples:

Example 6.7. The Smagorinsky model [277] described in Chap. 3 is Galilean
invariant.

Indeed, S(w,w) = (Csδ)2|∇sw|∇sw, so that

S(w + Z,w + Z) = (Csδ)2|∇s(w + Z)|∇s(w + Z) = S(w,w),

since Z is a constant vector.

Example 6.8. The eddy viscosity model νT = µδ|w−w| presented in Chap. 4
is Galilean invariant, provided that Z = Z for constant vectors Z. Indeed,

S(w + Z,w + Z) = µδ|(w + Z) − (w + Z)|∇s(w + Z) = S(w,w).

Example 6.9. The Bardina Scale-similarity model [13] (described in Chap. 8)
is Galilean invariant, provided that Z = Z, Zw = Z w and wZ = w Z for
constant vectors Z.

Here SBardina(w,w) = ww − w w. Thus,

S(w + Z,w + Z) = (w + Z)(w + Z) − (w + Z) (w + Z)
= (ww − w w) + wZ + Zw + ZZ − (wZ + Zw + Z Z)
= S(w,w) + (wZ

¯
− w Z) + (Zw − Z w) + (ZZ − Z Z)

= S(w,w).

Example 6.10. The model S(w,w) = ww−ww (Chap. 8) is Galilean invari-
ant, provided that the averaging preserves incompressibility (∇ ·w = ∇ ·w),
constant vectors (Z = Z), Zw = Z w and wZ = w Z.



142 6 Basic Criteria for Subfilter-scale Modeling

This is a model in which S(w + Z,w + Z) �= S(w,w) and yet the model is
still Galilean invariant. Indeed,

S(w + Z,w + Z) = (w + Z)(w + Z) − (w + Z)(w + Z)
= (ww − ww) + (wZ − wZ) + (Zw − Zw) + (Z Z − Z Z)
= S(w,w) + (w − w)Z + Z(w − w).

Thus, since ∇ · w = ∇ ·w = 0,

∇ · S(w + Z,w + Z) = ∇ · S(w,w) + (∇ · w −∇ · w)Z + Z(∇ · w −∇ · w)
= ∇ · S(w,w).

Example 6.11. The Rational LES model [122] as well as the Gradient LES
model [212, 65] (see Chap. 7 for details) are Galilean invariant. Indeed,

S(w + Z,w + Z) =
(
�− δ2

4γ
∆

)−1 (
δ2

2γ
∇(w + Z)∇(w + Z)

)
=
(
�− δ2

4γ
∆

)−1 (
δ2

2γ
∇w∇w

)
= S(w,w).

Remark 6.12. In proving translation and Galilean invariance for all the LES
models that we considered above, we assumed that δ (the radius of the spatial
filter) is constant in space. If, however, δ = δ(x), then the translation and
Galilean invariance might not hold anymore.
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Closure Based on Wavenumber Asymptotics

This chapter is devoted to the derivation and mathematical analysis of three
approximate deconvolution LES models. A formal1 definition of the approxi-
mation deconvolution approach might be the following:

Definition 7.1. A deconvolution method is defined by means of an operator
D such that if v = gδ ∗ u, then u = D(v). An “order α” approximate decon-
volution operator is an operator Dα such that if u = Dα(v) and u is smooth
enough, then gδ ∗ u = v + O(δα).

Essentially, all approximate deconvolution LES models aim at recovering
(some of) the information lost in the filtering process (i.e. u′ = u − u) by
using the available approximation of the filtered flow variables (i.e. u). The
approximate deconvolution methodology has a long and rich history in the
LES community, starting with the pioneering work of Leonard [212], and con-
tinuing with Clark, Ferziger, and Reynolds [65], Geurts [130], Domaradzki and
collaborators [93, 92], Stolz, Adams, and Kleiser [285, 288, 287, 2, 284, 289,
290, 291, 286, 3], Galdi and Layton [122], just to name a few. These methods
have different names (such as approximate deconvolution or velocity estima-
tion), but they all share the same philosophy: use an approximation for u to
recover an approximation for u. This approximate deconvolution philosophy
is fundamentally different from the eddy viscosity philosophy. The former is
mathematical in nature, whereas the latter is based entirely on physical in-
sight. Each approach has its own advantages and drawbacks. We described
the eddy viscosity approach in Part II. We shall now start presenting some
approximate deconvolution models. We shall continue this presentation in
Chap. 8.

We present in this chapter a special class of approximate deconvolution
models based on wavenumber asymptotics. The algorithm used in the deriva-
tion of these LES models is straightforward:

1 Of course, in the mathematical development of a specific approximate deconvo-
lution method, domains, ranges, etc. all must be specified.
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Wavenumber Asymptotics Approximate Deconvolution

• Step 1: Apply the Fourier Transform to all the terms involved in the clo-
sure problem

• Step 2: Apply asymptotic expansion to approximate the resulting terms
in the wavenumber space

• Step 3: Apply the Inverse Fourier Transform to the new terms to get
approximations in the physical space of the original terms in the closure
problem

Of special importance in this algorithm is the actual form of the LES spatial
filter gδ. This is in clear contrast to the eddy viscosity models where the spatial
filter gδ was used only implicitly (through the radius δ, for example). In the
derivation of all the LES models in this chapter, we shall use the Gaussian
filter introduced in Chap. 1.

The difference mentioned above is the essential reason for different ter-
minologies for the stress tensor τ = uuT − uuT in the closure problem: for
the most part, the LES community refers to τ as the subgrid-scale (SGS)
stress tensor. It is then implicitly assumed that the grid-scale h and the filter-
scale δ are treated as one item for all practical purposes (in other words,
there is no distinction made between h and δ). Thus, in general, when the
SGS terminology is used, it is generally assumed that all the information be-
low the grid-scale h (and therefore that below the filter-scale δ) is completely
and irreversibly lost. Then, the LES modeling process in the closure problem
employs exclusively physical insight to account for the subfilter-scale informa-
tion.

At the other end of the spectrum are those in LES who refer to the stress
tensor τ = uuT −uuT in the closure problem as the subfilter-scale (SFS)
stress tensor. In this case, one makes implicitly a clear distinction between
the filter-scale δ (the radius of the spatial filter gδ) and the grid-scale h.

Although less popular than the SGS approach, the SFS approach has a long
and rich history. The first SFS model was introduced by Leonard in his pio-
neering work in 1974 [212]. Subsequently, Clark, Ferziger, and Reynolds devel-
oped Leonard’s model in [65]. Since then, there have been many SFS proposed
and used successfully [130, 93, 92, 285, 288, 287, 2, 284, 289, 290, 291, 286, 3,
122, 39, 170, 106, 165, 166, 309, 308, 310, 55, 315, 316, 66, 67].

In this chapter, we analyze three such SFS models: the Gradient LES
model of Leonard [212] and Clark, Ferziger, and Reynolds [65], the Rational
LES model of Galdi and Layton [122], and the Higher-order Subfilter-scale
model of Berselli and Iliescu [33]. All three models belong to a particular class
of SFS models – the approximate deconvolution models based on wavenumber
asymptotics. For each model, we start with a careful derivation followed by
a thorough mathematical analysis.
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7.1 The Gradient (Taylor) LES Model

The Gradient LES model is the first approximate deconvolution model based
on wavenumber asymptotics. This model was introduced by Leonard [212] and
was developed in Clark, Ferziger, and Reynolds [65]. The Gradient LES model
has been used in numerous computational studies [65, 106, 165, 166, 309, 308,
310, 55, 315, 316]. When used as a stand-alone LES model, the Gradient LES
model produces numerically unstable approximations. This was noted, for
example, in the numerical simulation of 3D lid-driven cavity turbulent flows,
where the Gradient LES model produced finite time blow-up of the kinetic
energy (see Iliescu et al. [169]). To stabilize the numerical approximation,
the Gradient LES model is usually supplemented by an eddy viscosity term,
resulting in a so-called mixed model (see, [316]). The role and limitations
of the Gradient LES model have recently been reconsidered by Geurts and
Holm [132].

It is now widely accepted that the Gradient LES model, while recovering
some of the subfilter-scale information, is very unstable in numerical com-
putations (if it is not supplemented by an eddy viscosity model). In fact, we
present in the next section a mathematical reason for the numerical instability
of the Gradient LES model. We then introduce the Rational LES model of
Galdi and Layton [122], which circumvents this drawback. Thorough numer-
ical tests with the Gradient and Rational LES models for turbulent channel
flows were performed in a series of papers by Iliescu and Fischer [106, 165, 166].
We present these tests in detail in Chap. 12. Further numerical tests were
performed in [169, 175, 173, 176]. All the numerical tests with the two LES
models confirm the mathematical improvement in the Rational LES model. In
Sect. 7.3, we present a further improvement of the Rational LES model, the
Higher-order Subfilter-scale Model of Berselli and Iliescu [33], which avoids
the mathematically induced instability in the Gradient LES model.

Thus, although it is relatively clear that the Gradient LES model should
be replaced by its improvements (the Rational or Higher-order Subfilter-scale
LES models) in numerical computations, we shall still present a careful math-
ematical analysis for the Gradient LES model, mainly because of its relative
popularity in the LES community.

7.1.1 Derivation of the Gradient LES Model

The unfiltered flow variable u is equal to its filtered part u = gδ ∗u plus “tur-
bulent fluctuations” (defined by u′ = u−u). Since convolution is transformed
into a product by the Fourier transform, we obtain

û(k) = ĝδ(k)û(k) + ĝδ(k)û′(k).

Thus,

û′(k) =
(

1
ĝδ(k)

− 1
)

û(k).
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The above formula allows us to evaluate the following terms involved in the
subfilter-scale stress tensor τ = uuT − uuT :

̂
uuT (k) = ĝδ(k )û(k) ∗ û

T
(k)

̂uu′T (k) = ĝδ(k) û(k) ∗
[(

1
ĝδ(k)

− 1
)

û
T
(k)

]
̂
u′ uT (k) = ĝδ(k)

[(
1

ĝδ(k)
− 1

)
û(k)

]
∗ û

T
(k)

̂u′ u′T = ĝδ(k)
[(

1
ĝδ(k)

− 1
)

û(k)
]
∗
[(

1
ĝδ(k)

− 1
)

û
T
(k)

]
.

(7.1)

The Gradient LES model is derived by using the Taylor expansion for ĝδ(k).
The expansion is done with respect to δ, up to terms that are O(δ4):

ĝδ(k) = 1 − δ2

4γ
|k|2 + O(δ4),

1
ĝδ(k)

− 1 =
δ2

4γ
|k|2 + O(δ4). (7.2)

Substitution of (7.2) in (7.1), and application of the inverse Fourier transform
yield

uuT = uuT +
δ2

4γ
∆(uuT ) + O(δ4),

uu′T = − δ2

4γ
u∆uT + O(δ4),

u′ uT = − δ2

4γ
∆uuT + O(δ4),

u′ u′T = O(δ4).

Ignoring terms that are of order of δ4, and by observing that

∆(f g) = ∆f g + 2∇f∇g + f ∆g,

we finally get

uuT − uuT =
δ2

2γ
∇u∇uT + O(δ4).

Recall that generally γ = 6, while the matrix ∇w∇wT is defined by

[∇w∇wT ]ij =
d∑

l=1

∂wi

∂xl

∂wj

∂xl
, i, j = 1, . . . , d.

Collecting terms and simplifying, we obtain the so-called Gradient LES model

wt + ∇q + (w · ∇)w − 1
Re

∆w + ∇ ·
[

δ2

12
∇w∇wT

]
= f , (7.3)

∇ ·w = 0, (7.4)

for the unknown w � u. This model is also known as the Taylor LES model,
since its derivation is based on a Taylor expansion in wavenumber space.
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7.1.2 Mathematical Analysis of the Gradient LES Model

In this section we sketch out the mathematical theory of existence and unique-
ness for the Gradient LES model. This theory is only local in time (very small
time 0 ≤ t < T , where T depends upon all problem data) and for very small
and very smooth data. This is consistent with computational experience for
the Gradient LES model. We require some smooth sets of functions and in
particular we define, for k ≥ 1

Hk
σ :=

{
v ∈ [Hk(Ω)]d : ∇ · v = 0

}
.

Definition 7.2 (Compatibility condition). We say that the initial datum
w0 ∈ H3

σ satisfies compatibility conditions if w0 and ∂tw0 have null trace on
the boundary of Ω. In particular, ∂tw0 means

∂tw0 = −∇ · (w0 wT
0 ) +

1
Re

∇ · ∇sw0

− δ2

12
∇w0∇wT

0 −∇p(x, 0) + f(x, 0)

and the value of p(x, 0) is obtained by solving an elliptic problem; see [67].

The following theorem of existence of smooth solutions, for small initial data
was proven in Coletti [66] for the Gradient LES model.

Theorem 7.3. Let us assume that

1. Ω ⊂ �3 is an open, bounded, and connected set with regular boundary;
2. the initial condition w0 satisfies the compatibility condition of Defini-

tion 7.2;
3. w0 ∈ H3

σ with ‖w0‖H3 ≤ δ2;
4. f belongs to L2(0, T ; H2

σ) ∩ H1(0, T ; L2
σ), and satisfies ‖f‖L2(0,T ;H2) ≤ δ2

and ‖∂tf‖L2(0,T ;L2) ≤ δ2.

Then, there exists a δ0 > 0 such that for every δ ∈ (0, δ0], the solution
to (7.3) exists and is unique in C(0, T ; H3

σ) ∩ L2(0, T ; H4
σ) for the velocity

and C(0, T ; H2
σ) ∩ L2(0, T ; H3

σ) for pressure.

This result requires both very high regularity and smallness of the data of the
problem.

Regarding the existence of weak solutions we have the following result,
proved in [67]. To analyze weak solutions it seems necessary (currently we do
not know how to remove this limitation) to add a dissipative term of Smagorin-
sky type. In this way the Gradient LES model results as an improvement of
the Smagorinsky model, that may include backscatter of energy. The global
existence theory of Coletti [67] is based upon an assumption that the nonlin-
ear diffusion added by the p-Laplacian is large enough (see (7.7)) to control
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any blow-up arising from the instabilities in the Gradient LES model of the
nonlinear interaction terms.

wt + ∇q + ∇ · (wwT ) − 2
Re

∇ · ∇sw

−∇ · (CG|∇w|∇w) + ∇ ·
[

δ2

12
∇w∇wT

]
= f , (7.5)

∇ ·wm = 0. (7.6)

We now give Coletti’s existence theorem from [67] for the above mixed
model (7.5) and (7.6).

Theorem 7.4. If

CG >
δ2

6
, (7.7)

if the initial datum u0 ∈ W 1,3
0,σ and if f ∈ H1(0, T ; L2

σ), then a unique weak
solution to the Gradient LES model (7.5) and (7.6) exists in H1(0, T ; L2

σ) ∩
L3(0, T ; W 1,3

0,σ). Furthermore, such a solution is unique.

This theorem does not involve smallness on the data, but requires a sufficiently
big constant CG such that (7.7) is satisfied. Regarding the meaning of this
assumption, see Sect. 7.1.3.

Proof (of Theorem 7.4). The proof of this theorem is similar to that of The-
orem 3.9. The main point is to show that the new operator involved in the
abstract formulation of the problem is monotone. In this case the operator A
involved is

A(u) = − 2
Re

∇ · ∇su −∇ · (CG|∇u|∇u) + ∇ ·
[

δ2

12
∇u∇uT

]
.

The constant CG has to be large in order to show that the operator A is
monotone. The Smagorinsky term (3-Laplacian) will then dominate the last
term, see Lemma 7.5.

We start the proof of the theorem with the usual energy estimate.

Energy estimate. By multiplying (7.5) (or better use wm as Test function
in the weak formulation) by wm, we get

1
2

d

dt
‖wm‖2 +

2
Re

‖∇swm‖2+CG‖∇wm‖3
L3

≤ δ2

12

∫
Ω

|∂lwi
m∂lwj

m∂jwi
m|dx + ‖f‖ ‖wm‖

(7.8)

≤ δ2

12
‖∇wm‖3

L3 +
1
2
‖f‖2 +

1
2
‖wm‖2.
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In the derivation of the above estimate we used the linear algebra estimate

d∑
i,j,k=1

akibkjcji ≤ ‖a‖ ‖b‖ ‖c‖,

which holds for all real, nonnegative, square matrices a, b, c ∈ M(d × d,�);

recall that ‖ . ‖ is the usual norm ‖m‖ =
√∑d

i,j=1 m2
ij .

Finally, provided that (7.7) holds, the first term on the right-hand side
of (7.8) may be absorbed in the left-hand side to give

1
2

d

dt
‖wm‖2 +

2
Re

‖∇swm‖2 +
(

CG − δ2

6

)
‖∇wm‖3

L3 ≤ 1
2
‖f‖2 +

1
2
‖wm‖2.

This shows (with the standard procedure we introduced in the previous chap-
ters) that

sup
0<t<T

‖wm(t)‖2 +
∫ T

0

‖∇swm(τ)‖2dτ +
∫ T

0

‖∇wm(τ)‖3
L3dτ ≤ C, (7.9)

for a constant CG that depends on Re, δ, and f , but is independent of m ∈ �.

Second a priori estimate. Now we proceed as in the analysis of the
Smagorinsky–Ladyžhenskaya model and we multiply (7.5) (again to be more
precise a weak formulation of the Galerkin Gradient LES model) by ∂twm to
get the following equation:

‖∂twm‖2 +
1

Re

d

dt
‖∇swm‖2 +

CG

3
d

dt
‖∇wm‖3

L3 = (f , ∂twm)

+ (wm · ∇wm, ∂twm) +
δ2

12
(∇wm∇wT

m, ∂t∇wm

)
.

(7.10)

The first term on right-hand side can be estimated as in Sect. 3.4, but the last
term involves the time derivative of ∇wm, which is not present on the left-
hand side! Integrating by parts this term would lead to second-order (space)
derivatives of wm! These two facts show that this estimate is not useful by
itself: we need at least another tool to get estimates involving the same terms,
on both sides of the inequalities.

In particular we estimate the last term on the right-hand side of (7.10) as
follows:∣∣(∇wm∇wT

m, ∂t∇wm

)∣∣ ≤ ∫
Ω

|∇wm|1/2|∂t∇wm||∇wm|3/2 dx

and with the Hölder inequality

≤
(∫

Ω

|∇wm||∂t∇wm|2 dx
)1/2 (∫

Ω

|∇wm|3 dx
)1/2

≤ ε

∫
Ω

|∇wm||∂t∇wm|2 dx + C(ε)‖wm‖3
L3.
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Third a priori estimate. We prove another a priori estimate: we first
differentiate (7.5) with respect to time, then we multiply by ∂twm, and we
integrate by parts. We get the following system of PDEs:

∂2
t wm + ∂twm · ∇wm + wm · ∇∂twm − 2

Re
∇ · ∇s∂twm

− ∂t∇ · (CG|∇wm|∇wm) + ∇ · δ2

12
(
∂t∇wm∇wT

m + ∇wm∂t∇wT
m

)
= ∂tf − ∂t∇p.

After multiplication by ∂twm the terms on the left-hand side can be treated
as follows:

(∂2
t wm, ∂twm) =

1
2

d

dt
‖∂twm‖2, (−∇ · ∇s∂twm, ∂twm) = ‖∇∂twm‖,

and consequently

−
∫

Ω

∂t∇ · (CG|∇wm|∇wm)∂twm dx

= −CG

∫
Ω

[
∇ ·

(
∂

∂t
|∇wm|∇wm

)
+ ∇ · (CG|∇wm|∂t∇wm)

]
∂twm dx

= CG

∫
Ω

(∇wm∂t∇wm)2

|∇wm| dx + CG

∫
Ω

|∇wm| |∂t∇wm|2 dx.

(7.11)
The SFS stress-tensor part (multiplied by δ2/12) is treated simply as follows:∣∣∣∣∫

Ω

[
∂t∇wm∇wT

m + ∇wm∂t∇wT
m

]
∂t∇wm dx

∣∣∣∣ ≤ ∫
Ω

|∂t∇wm|2|∇wm| dx.

The usual nonlinear term can be estimated in the following manner: first
note that since ∂twm is divergence-free, (wm · ∇∂twm, ∂twm) = 0. Then, we
estimate the other term as follows:

|(∂twm · ∇wm,∂twm)| ≤
∫

Ω

|∂twm|2|∇wm| dx
use Hölder inequality with exponents 6, 2, and 3
≤ ‖∂twm‖L6‖∂twm‖ ‖∇wm‖L3

use the Sobolev embedding, together with Young inequality,

≤ ε‖∂t∇wm‖2 + C(ε, Ω)‖∂twm‖2‖∇wm‖2
L3 .

The first nonlinear term on the right-hand side of (7.10) can be estimated in
the same way.

By observing that the first term on the right-hand side of (7.11) is non-
negative we arrive finally at the estimate
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1
2

d

dt
‖∂twm‖2 + CG

∫
Ω

|∇wm||∂t∇wm|2 dx +
2

Re
‖∂t∇wm‖2

≤ δ2

6

∫
Ω

|∇wm| |∂t∇wm|2 dx + ‖∂tf‖2 + ‖∂twm‖2.

(7.12)

This estimate shows how taking CG to satisfy (7.7) makes it possible to control
the additional nonlinear term. In fact, if we add (7.10) (with the estimates for
the right-hand side) and (7.12), we obtain

d

dt

(
1
2
‖∂twm‖2 +

2
Re

‖∇wm‖2 +
CG

3
‖∇wm‖3

L3

)
+ ‖∂twm‖2

+
1

2Re
‖∂t∇wm‖2 +

[
CG − δ2

6

] ∫
Ω

|∇wm||∂t∇wm|2 dx

≤ c
[
‖∇wm‖2

L3 + ‖∂twm‖ ‖∇wm‖3
L3 + ‖f‖2 + ‖∂tf‖2

]
.

Now we can use the Gronwall lemma (recall (7.9) to show that the right-hand
side satisfies the required hypotheses) to show that wm is bounded uniformly
(with respect to m) in the space

H1(0, T ; L2) ∩ L3(0, T ; W 1,3
0 ).

Having this bound, the proof follows as in Theorem 3.9, provided we know
that the operator A(v) is monotone. We prove this in the following lemma:

Lemma 7.5. If condition (7.7) is satisfied, then∫
Ω

(A(v) − A(w))(∇v −∇w) dx ≥ 2
Re

‖∇sv −∇sw‖2 ∀u, v ∈ W 1,3
0 .

Essentially this lemma states that if CG is “big enough”, then the additional
term does not influence the good properties of the Smagorinsky (or better
3-Laplacian) operator analyzed in Sect. 3.4.

Proof. The proof of this lemma follows by using the same technique as for
Proposition 3.18.

Let us define the operator A : W 1,3
0 (Ω) → W−1,3/2(Ω)

〈Au,v〉 :=
2

Re

∫
Ω

∇su∇sv dx+CG

∫
Ω

|∇u|∇u∇v dx− δ2

12

∫
Ω

∇u∇uT∇v dx.

We consider the function

f(s) = 〈A(sw1 + (1 − s)w2),w1 − w2〉, s ∈ [0, 1].

The function f is monotone increasing if and only if the operator A is mono-
tone. To prove such a result, we use the technique of Proposition 3.22 to



152 7 Closure Based on Wavenumber Asymptotics

estimate the part arising from the 3-Laplacian and we consider the additional
term as a perturbation.

If we set ws = sw1 + (1 − s)w2, we can write

B =
∫

Ω

〈A(w1)−A(w2),w1−w2〉 dx =
∫

Ω

〈[∫ 1

0

d

ds
A(ws) ds

]
,w1 − w2

〉
dx.

We can split B in a natural way as B = B1 + B2 + B3, where the first term
involves the “Laplacian”, the second term the “3-Laplacian”, while the last
term represents the SFS stress tensor appearing in the Gradient LES model.

The first term of B is easily calculated:

B1 =
2

Re

∫
Ω

‖∇sw1 −∇sw2‖2 dx.

By calculating explicitly the derivative with respect to the parameter s and

by recalling that |∇w| =
√
∇w∇wT =

√∑d
i,j=1 (∇w)2ij , we get the following

expression for B2:

B2 = CG

∫
Ω

∫ 1

0

∑
i,j,k,l

(∇ws)ij

|∇ws| (∇ws)kl(∇w1 −∇w2)ij (∇w1 −∇w2)kl dx ds

+ CG

∫
Ω

∫ 1

0

|∇ws| |∇w1 −∇w2|2 dx ds.

Note that the second term is obviously nonnegative, while the first term is
nonnegative since∑

i,j,k,l

(∇ws)ij(∇ws)kl(∇w1 −∇w2)ij (∇w1 −∇w2)kl

=

⎡⎣∑
i,j

(∇ws)ij(∇w1 −∇w2)ij

⎤⎦2

.

For B3 we easily get the following expression:

B3 = − δ2

12

∫
Ω

∫ 1

0

∑
i,k,l

(∇w1 −∇w2)ik(∇ws)il(∇w1 −∇w2)lk dx ds

− δ2

12

∫
Ω

∫ 1

0

∑
i,k,l

(∇w1 −∇w2)il(∇ws)ik(∇w1 −∇w2)lk dx ds.

It follows, by using the Hölder inequality, that

|B3| ≤ δ2

6

∫
Ω

|∇ws| |∇w1 −∇w2|2 dx ≤ δ2

6
‖∇ws‖L3‖∇w1 −∇w2‖2

L3 .

This finally shows that if Condition (7.7) is satisfied, then B2 + B3 ≥ 0. ��
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Remark 7.6. Theorem 7.4 requires the additional Smagorinsky term to be

−∇ · (CG|∇w|∇w).

This model is not frame-invariant. The question whether it is possible to
replace ∇ with its symmetric (and more natural) counterpart ∇s is still un-
solved. We believe that monotonicity fails in Lemma 7.5 with this substitution.

7.1.3 Numerical Validation and Testing of the Gradient LES
Model

The assumption (7.7) on the size of the constant CG in Theorem 7.4 implies
that the Smagorinsky term dominates the actual Gradient LES model term.
This is in clear contradiction with the very assumption in the derivation of
the Gradient LES model: indeed, the wavenumber asymptotic analysis was
essentially based on the idea that one keeps all terms formally O(δ2) and
drops terms formally O(δ4). Thus, to be consistent with the derivation of
the Gradient LES model, one should consider in the mixed Gradient LES
model (7.5), (7.6) a Smagorinsky term with a constant C = O(δ4) and not
C = O(δ2) as in assumption (7.7).

This mathematical discrepancy between the derivation of the Gradient
LES model and the assumptions that seem needed for proving existence and
uniqueness of weak solutions is recovered at a numerical level as well: nu-
merical computations with the Gradient LES model are very unstable. For
example, for the 3D lid-driven cavity problem, the kinetic energy of the Gra-
dient LES model blew-up in finite time [169]. To stabilize it, the Gradient
LES model is used with an O(δ2) Smagorinsky term in actual numerical sim-
ulations of turbulent flows, a the so-called mixed model (see [316]).

The Gradient LES model has been used in numerous computational stud-
ies [65, 106, 165, 166, 309, 308, 310, 55, 315, 316]. Thorough numerical tests
with the Gradient LES model for turbulent channel flows were performed in
a series of papers by Iliescu and Fischer [106, 165, 166]. We present these
tests in detail in Chap. 12. Further numerical tests for the mixing layer were
performed by John in [175, 173, 176]. All the numerical tests confirm the
mathematical instability of the Gradient LES model. This illustrates one of
the principles that we have tried to highlight throughout the book:

In LES computations of turbulent flows, mathematical analysis, physical

insight, and numerical experience should permanently complement and guide

each other.

The evolution of the Gradient LES model into the Rational LES model (its
improvement presented in the next section) is the perfect illustration of this
principle; cfr. the parable by F. Bacon:

The men of experiment are like the ant, they only collect and use; the

reasoners resemble spiders, who make cobwebs out of their own substance.
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But the bee takes the middle course: it gathers its material from the flow-

ers of the garden and field, but transforms and digests it by a power of

its own. Not unlike this is the true business of philosophy (science); for

it neither relies solely or chiefly on the powers of the mind, nor does it

take the matter which it gathers from natural history and mechanical ex-

periments and lay up in the memory whole, as it finds it, but lays it up

in the understanding altered and digested. Therefore, from a closer and

purer league between these two faculties, the experimental and the rational

(such as has never been made), much may be hoped (Novum Organum,

1620.)

7.2 The Rational LES Model (RLES)

In this section we present a careful derivation and a thorough mathematical
analysis for another approximate deconvolution LES model derived through
wavenumber asymptotics: the Rational LES model of Galdi and Layton [122].
The Rational LES model is an approximate deconvolution model whose
derivation is based on an O(δ2) asymptotic wavenumber expansion similar
to that in the derivation of the Gradient LES model. The essential difference
in the derivation of the two LES models is the approximation used in the
wavenumber space: Taylor series for the Gradient LES model and a rational
(Padé) approximation for the Rational LES model. As we have seen in the
previous section, the main drawback of the Gradient LES model is its nu-
merical instability in practical computations. The same instability is reflected
in the mathematical analysis of the Gradient LES model by the need for an
extra eddy viscosity term. The Padé approximation used in the derivation of
the Rational LES model is stable and consistent with the original filtering
by a Gaussian. This is reflected both in the mathematical analysis (there is
no need for an extra eddy viscosity term) and in the numerical experiments
where the Rational LES model is much more stable and accurate than the
Gradient LES model [169, 106, 165, 166, 173, 175, 176].

Consider the periodic or pure Cauchy problem and let k be the dual vari-
able of the Fourier transform. Recall that the Fourier transform of a Gaussian
is again a Gaussian:

F(gδ)(k) = ĝδ(k) = e−
δ
4γ |k|2.

The Fourier transform of u = gδ ∗u yields û = ĝδ(k)û(k) so that, proceeding
formally,

û =
1

ĝδ(k)
û(k). (7.13)

At first sight, for the Gaussian filter this relation could be inverted and the
closure problem solved exactly. Indeed, this would give a deconvolution oper-
ator u = D(u) and we could write uuT = D(u)D(uT ) exactly. However, this
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exact solution u = D(u) is an illusion. For example, stable inversion of (7.13)
in L2 is possible only when ∣∣∣∣ 1

ĝδ(k)

∣∣∣∣ is bounded.

Unfortunately, |ĝδ(k)| → 0 (exponentially fast) as |k| → ∞ and this nec-
essary condition fails. This is known as a “small divisor problem.” Since
|ĝδ(k)| → 0 exponentially fast, (7.13) cannot be stably inverted for data
û(k) in any Sobolev space Hs(�d) either for the same reason: |k|s

|ĝδ(k)| is not
bounded as |k| → ∞.

Even though no information is (in some sense) lost in (7.13), the rela-
tion (7.13) cannot be stably inverted because of the small divisor problem and
the information lost in filtering cannot be recovered. (Since the Gaussian is
the heat kernel, exact deconvolution is equivalent to solving the heat equation
backwards in time stably, a well-known ill-posed problem.) Thus, it seems
that inverting (7.13) in a useful sense depends on approximating (7.13) and
inverting it inexactly, i.e. in losing information!

Given (7.13) and the above considerations, it is clear that an approximation
to ĝδ(k) in (7.13) yields an approximate deconvolution method which gives
a closure model. The property of the Gaussian which is fundamental to LES
is its smoothing property. Smoothing in x is equivalent to decay at infinity
in k. Thus, the key property that must be preserved under deconvolution is
smoothing. In wavenumber space this means decay at ∞ of |ĝδ(k)|:

|ĝδ(k)| → 0 (exponentially fast) as |k| → ∞.

One early approximation to ĝδ(k) is given by its Taylor polynomial

ĝδ(k) = 1 − δ2

4γ
|k|2 + O(δ4).

We have seen in Sect. 7.1.1 (and we shall see again in the numerical exper-
iments in Chap. 12) that this approximation leads to amplification of high
wavenumbers and finite time blow up.

Clearly, |ĝδ(k)| → 0 at infinity but (1 − δ2

4γ |k|2) → ∞ at k → ∞. Thus,
the Taylor approximation will lead to an anti-smoothing model.

The simplest approximation to the exponential that preserves the smooth-
ing property (decay at infinity in |k|) is the subdiagonal (0, 1) Padé approxi-
mation (e.g. Pozzi [259]):

ĝδ(k) =
1

1 + δ2

4γ |k|2
+ O(δ4). (7.14)

The approximation (7.14) in (7.13) gives

û =
(

1
1 + δ2

4γ |k|2
)−1

û + O(δ4).
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Inversion gives the Padé based approximate deconvolution formula ([122]):

Dδ :=
(
− δ2

4γ
∆ + �

)
: H2(�d) → L2(�d) by

u = Dδ(u) + O(δ4) =
(
− δ2

4γ
∆ + �

)
u + O(δ4). (7.15)

Since u′ = u−u, rearrangement also gives the approximation for u′ in terms
of u :

u′ = − δ2

4γ
∆u + O(δ4). (7.16)

This approximate deconvolution formulation can also be used to build the
Rational LES model presented below. In performing this modeling it is useful
to estimate the sizes of the individual terms to be modeled. To this end,
consider the filtered nonlinear term. As u = u + u′, we have

uuT = uuT + uu′T + u′ uT + u′ u′T . (7.17)

Lemma 7.7. In (7.17), for smooth u

uuT = O(1),

uu′T + u′ uT = O(δ2), and

u′ u′T = O(δ4).

Proof. That uuT = O(1) is a direct calculation. The remainder follows from
u − u = O(δ2) for smooth u (e.g. [158]). Indeed, for smooth u

‖uu′T + u′ uT ‖ ≤ C(u)‖u′‖ = C(u) ‖u− u‖ ≤ C(u) δ2

and
‖u′ u′T ‖ = ‖(u − u)(u − u)T ‖ ≤ C(u) δ4.

��
Using the Padé approximation (7.15) in the individual terms in (7.17), col-
lecting and simplifying the result and discarding terms of O(δ4) gives an LES
model (proposed in [122] and studied in [106, 165, 175, 29]) now known as the
Rational LES Model :

wt + ∇ · (ww) − 1
Re

∆w + ∇ ·
(

δ2

2γ
A(∇w∇wT )

)
= f , (7.18)

∇ ·w = 0, (7.19)

with the initial condition w(x, 0) = u0(x). For mathematical convenience, we
consider periodic boundary conditions for the Rational LES model. A thor-
ough discussion of boundary conditions in LES is given in Part IV. We also
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discuss the challenge of equipping the Rational LES model with boundary
conditions and propose a couple of solutions in Chap. 12.

In (7.18),

Aφ :=
(
− δ2

4γ
∆ + �

)−1

φ.

The Rational LES model (7.18) omits all O(δ4) terms, including the turbu-
lent fluctuations in (7.17), ∇ · (u′ u′T ). These are widely believed to be very
important in the physics of turbulence around the cut-off frequency. Thus, it
is both mathematically and physically sensible to append to (7.18) and (7.19)
an eddy viscosity model for this term:

−∇ · (u′ u′T ) ≈ −∇ · (νT (u, δ)∇su),

where, in view of Lemma 7.7, asymptotic consistency requires that (formally)

νT (u, δ) .= O(δ4) as δ → 0.

Adding this term results in the Mixed Rational LES model, given by

wt + ∇ · (w wT ) −∇ ·
[(

2
Re

+ νT (w, δ)
)
∇sw

]
+∇ ·

[
δ2

2γ
A (∇w∇wT )

]
= f in Ω × (0, T ), (7.20)

∇ ·w = 0 in Ω × (0, T ),
w(x, 0) = u0(x) in Ω and periodic boundary conditions.

These models have been tested in the work of Iliescu et al. [169], Fischer and
Iliescu [106, 165, 166], and John [175]. The Rational LES model performs very
well in reproducing the important statistics of turbulent channel flow [106, 165,
166] and in very interesting tests in shear flows [175]. The Mixed Rational
model with the O(δ3) eddy viscosity of [170]

νT = µδ|w − w| (= O(δ3) formally)

was reported the best performer of all models tested.

7.2.1 Mathematical Analysis for the Rational LES Model

The Rational LES Model (7.18) and (7.19) is quite complex and, so far,
a complete mathematical foundation for the model for large data and long
time intervals is still an open problem. In [29] existence was proved for small
data/small time.

Interestingly, exquisitely careful calculations by John [175] (see also [169])
seem to indicate that without the addition of a small eddy viscosity model for
the (formally O(δ4)) neglected turbulent fluctuation term −∇ · (u′ u′T ), the
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kinetic energy of the Rational LES model can blow-up in finite time. Thus, the
above analysis might be reasonably sharp. (Its blow-up time is much longer
than that of the Gradient LES model.) On the other hand, the Mixed Rational
LES model (7.20) was very well behaved in these calculations for very small
amounts of eddy viscosity.

In this section we prove the existence of strong solutions for the Rational
LES model (7.18) and (7.19). The main result is the existence of such solutions
without extra and dominating dissipative terms, as are required in other LES
models [66, 67, 164].

Functional Setting

We restrict out analysis to the space periodic setting that decouples the bound-
ary effect with the modeling of the equations. Since we shall consider the prob-
lem in the space-periodic setting, we recall the basic function spaces needed to
deal with this functions, and we shall follow the notation of Temam [297]. In
particular, these turn out to be special cases of the Sobolev spaces introduced
in previous chapters. We denote by Hm

per(Q), m ∈ �, the space of functions
that are in Hm

loc(�
3) (i.e. u|O ∈ Hm(O) for every bounded set O) and that

are periodic with period L > 0 :

u(x + L ei) = u(x), i = 1, 2, 3,

where {e1, e2, e3} represents the canonical basis of �3, and Q =]0,L[3 is
a cube of side length L.

In the case m = 0, H0
per(Q) coincides simply with the Lebesgue space

L2(Q). For an arbitrary m ∈ �, Hm
per(Q) is a Hilbert space and the functions

in Hm
per(Q) are easily characterized by their Fourier series expansion

Hm
per(Q) =

{
u =

∑
k∈�3

cke
2iπk·x

L , ck = c−k,
∑
k∈�3

(1 + |k|)2m|ck|2 < ∞
}

.

(7.21)
The definition (7.21) allows us to consider also2 m ∈ �. We set

Hm =
{
u ∈ Hm

per(Q) of type (7.21), such that c0 = 0
}

.

For m ∈ �, Hm is a Hilbert space if embedded with the following norm (note
that the norm involve “fractional derivatives”):

‖u‖2
Hm =

∑
k∈�3

|k|2m|ck|2;

furthermore the spaces Hm and H−m are in duality.
2 In the general case of nonperiodic functions, the definition of Sobolev spaces with

real index is much more involved, see Adams [4].
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We now define the proper spaces involved in the theory of the Navier–
Stokes equations. They are the periodic specialization of the spaces L2

σ and
H1

0,σ introduced in Chap. 2.
Two spaces frequently used in the theory of Navier–Stokes equations are

H =
{
u ∈ [H0]3, ∇ · u = 0

}
and V =

{
u ∈ [H1]3, ∇ · u = 0

}
. (7.22)

Note that they are subspaces of [H0]3 and [H1]3, defined by the constraint

k · ck = 0.

Next, we summarize other properties of these function spaces: if Γi = ∂Q ∩
{xi = 0}, Γi+3 = ∂Q ∩ {xi = L}, and if u ∈ V, then u|Γj+3 = u|Γj

. Let G be
the orthogonal complement of H in [H0]3 (this means that [H0]3 = H ⊕ G).
We have the following characterization of G:

G =
{
u ∈ [L2(Q)]3 : u = ∇q, q ∈ H1

per(Q)
}

.

This is an explicit realization of the Helmholtz decomposition.
Next, we need to define properly the Stokes operator associated with

the space-periodic functions. Given f ∈ H−1 = (H1)′, we solve{−∆u + ∇p = f in Q,
∇ · u = 0 in Q.

(7.23)

We observe that if f belongs to H (in particular
∑

k∈�3 k · fk = 0, where fk
are the Fourier coefficients of f), then the Fourier coefficients {uk, pk} of the
solution of (7.23) are given by

uk = − fk L2

4π2|k|2 and pk = 0, k ∈ �3\{0, 0, 0},

while (u0, p0) = (0, 0). We can properly define a one-to-one mapping f → u
from H onto

D(A) = {u ∈ H, ∆u ∈ H} = H2 ∩ H.

Its inverse from D(A) onto H is the Stokes operator denoted by A and, in
fact,

Au = −∆u, ∀u ∈ D(A).

Remark 7.8. In the absence of boundaries (in this case, the space-periodic
setting) the Stokes and the Laplace operator coincide, apart from the domain
of definition.

If D(A) is endowed with the norm induced by L2, then A becomes an iso-
morphism between D(A) and H. It follows that the norm ‖Au‖ on D(A)
is equivalent to the norm induced by H2. It is well known that A is



160 7 Closure Based on Wavenumber Asymptotics

an unbounded, positive, linear, and self-adjoint operator on H. Further-
more, the operator A−1 is linear continuous and compact. Hence A−1 pos-
sesses a sequence of eigenfunctions {Wl}l∈� that form an orthonormal basis
of H , ⎧⎨⎩

AWl = λl Wl, Wl ∈ D(A),

0 < λ1 ≤ λ2 ≤ λ3 . . . , and λl → ∞ for l → ∞.
(7.24)

We can also define fractional powers Aα, α ∈ � : if v =
∑∞

l=1 vl Wl,
then

Aαv =
∞∑

l=1

λα
l vl Wl ∀v ∈ D(Aα),

where D(Aα) ⊂ H = {v ∈ H :
∑

l λ
2α
l |vl|2 < ∞}. If we set Vα = D(Aα/2),

then
Vα = {v ∈ Hα, ∇ · v = 0} .

All the norms that appear in the sequel are clearly evaluated on Q =
]0,L[3.

Proof of the Existence and Uniqueness Theorems

In this section we prove the existence and uniqueness of a particular class of
solutions for (7.18) and (7.19).

Definition 7.9. We say that w is a strong solution to system (7.18) and
(7.19) if

w ∈ L∞(0, T ; V ) ∩ L2(0, T ;D(A)), ∂tw ∈ L2(0, T ; H) (7.25)

and w satisfies, for each φ ∈ V,

d

dt
(w, φ)+

1
Re

(∇w,∇φ) + ((w · ∇)w, φ)

−
((

�− δ2

24
∆

)−1 [
δ2

12
∇w∇wT

]
,∇φ

)
= (f , φ).

(7.26)

Since w satisfies (7.25), then w ∈ C([0, T ]; V ) and, by interpolation, the
condition w(x, 0) = w0(x) makes sense.

The main result we prove is the following [29]:

Theorem 7.10. Let w0 ∈ V and f ∈ L2(0, T ; H). Then there exists a strictly
positive T ∗ = T ∗(δ,w0, Re, f) such that there exists a strong solution to (7.18)
and (7.19) in [0, T ∗). A lower bound for T ∗ depending on δ, ‖∇w0‖, Re, and
‖f‖L2(0,T ;L2) is obtained in (7.35).
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Remark 7.11. The strong solutions we define for the Rational LES model have
the same regularity as the strong solutions of the NSE we introduced in
Chap. 2. Furthermore, we shall show that also the life-span of the solution
satisfies an estimate that is completely analogous to that known for the NSE.

Proof (of Theorem 7.10). We consider the Faedo–Galerkin approximation of
problem (7.18), (7.19). As usual, we look for approximate functions

wm(x, t) =
m∑

k=1

gi
m(t)Wi(x),

satisfying for l = 1, . . . , m,

d

dt
(wm,Wl)+

1
Re

(∇wm,∇Wl) + ((wm · ∇)wm,Wl)

(7.27)

−
((

�− δ2

24
∆

)−1 [
δ2

12
∇wm∇wT

m

]
,∇Wi

)
= (f ,Wl),

wm(x, 0) = Pm(w0(x)).

The operator Pm denotes, as usual, the orthogonal projection Pm : H →
Span〈W1, . . . ,Wm〉.
Remark 7.12. The first a priori estimate fails for the Rational LES model.
In this case to obtain a useful estimate it is necessary to use suitable test
functions. Multiplication by wm as in the previous cases does not lead to an
estimate that can help to find a priori estimates. In fact, if we multiply by
wm the additional nonlinear term and integrate by parts, we obtain∫

Q

(
�− δ2

24
∆

)−1 [
δ2

12
∇wm∇wT

m

]
∇wm dx.

(1) This term has no definite sign, since the Rational LES model may allow
backscatter of energy, as demonstrated numerically by Iliescu and Fi-
scher [166]. These numerical results are presented in detail in Chap. 12.

(2) Even if there is smoothing due to the inverse of an elliptic operator, it does
not seem possible to prove that the absolute value of the above nonlinear
term is bounded by c‖∇wm‖2, for some c. This would allow us to absorb
the resulting term on the left-hand side.

To obtain a priori estimates, we need a different technique: we multiply (7.27)
by Awm, defined by

Awm := wm +
δ2

24
Awm,
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and use suitable integration by parts to get

1
2

d

dt

(
‖wm‖2 +

δ2

24
‖∇wm‖2

)
+

1
Re

(
‖∇wm‖2 +

δ2

24
‖Awm‖2

)
= (f ,Awm)

−((wm · ∇)∇wm,Awm) +

((
�− δ2

24
∆

)−1 [
δ2

12
∇wm∇wT

m

]
,∇Awm

)
.

The first term on the right-hand side can be estimated simply by the Schwartz
inequality

|(f ,Awm)| ≤ |(f ,wm)| + δ2

24
|(f , Awm)|

≤ 1
6 Re

(
‖∇wm‖ +

δ2

24
‖Awm‖2

)
+ c‖f‖2.

(7.28)

We also use the fact that AWm = λmWm to increase the L2-norm of wm

with that in V. The second term can be estimated by observing that, as
usual, ((wm · ∇)wm, wm) = 0 and by using the following classical inequality
(see, for instance, Prodi [261])

|((u · ∇)v,w)| ≤ c‖∇u‖‖∇v‖1/2‖Av‖1/2‖w‖, (7.29)

that holds ∀u ∈ V, ∀v ∈ D(A), and ∀w ∈ H . Thus, we obtain

|((wm · ∇)∇wm,Awm)| ≤ c δ2

24
‖∇wm‖3/2‖Awm‖3/2

≤ 1
Re

δ2

24
‖Awm‖2 +

c δ2Re3

24
‖∇wm‖6.

(7.30)

Concerning the last term, not present in the previous chapters, we use the fol-
lowing identity: given a linear, self-adjoint, and unbounded operator B acting
from D(B) ⊆ X into the Hilbert space (X, ( . , . )), we have

(Bx, y) = (x, By) ∀x, y ∈ D(B). (7.31)

In particular, if B = A−1, we have

(A−1x,Ay) = (x, y).

We observe that, since we are working in the space periodic setting, if Wk is
in the domain of A, its partial derivatives also belong to the same subspace
of H. We have then, by using (7.31),
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((

�− δ2

24
∆

)−1 [
δ2

12
∇wm∇wT

m

]
,∇Awm

)∣∣∣∣∣
=
∣∣∣∣(A−1

[
δ2

12
∇wm∇wT

m

]
,A∇wm

)∣∣∣∣ =
δ2

12
|(∇wm∇wm,∇wm)|

≤ δ2

12
‖∇wm∇wm‖ ‖∇wm‖ ≤ δ2

12
‖∇wm‖2

L4‖∇wm‖.

Now, by using the classical interpolation3 inequality

‖u‖L4 ≤ c‖u‖1/4‖∇u‖3/4 ∀u ∈ V, (7.32)

we obtain: ∣∣∣∣∣
((

�− δ2

24
∆

)−1 [
δ2

12
∇wm∇wT

m

]
,∇Awm

)∣∣∣∣∣
≤ c δ2

12
‖∇wm‖3/2‖Awm‖3/2

≤ 1
12 Re

δ2

12
‖Awm‖2 +

c δ2Re3

12
‖∇wm‖6.

(7.33)

By collecting estimates (7.28)–(7.30), and (7.33), we get

d

dt

(
‖wm‖2 +

δ2

24
‖∇wm‖2

)
+

1
Re

‖∇wm‖2

+
1

Re

δ2

24
‖Awm‖2 ≤ c‖f‖2 + c δ2Re3‖∇wm‖6.

(7.34)

The Gronwall lemma (provided f belongs to L2(0, T ; H)) and the same results
of existence for systems of ODEs we used in Chap. 2 imply that there exists
T ∗ > 0 such that there exists a solution wm to (7.27) in [0, T ∗) and

{wm} is uniformly bounded in L∞(0, T ∗; V ) ∩ L2(0, T ∗;D(A)).

We now investigate more carefully the question related to the lower bounds
on the life-span of solutions. The results of this section are similar to those
used to derive (2.29). They use essentially the same technique and extend that
estimate to the case of a nonvanishing external force.
3 This is an adaptation, in the periodic setting, of the Ladyžhenskaya’s inequality

we introduced in Chap. 2.
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A lower bound on the time T ∗ can be deduced as follows: let us set
y(t) = ‖wm‖ + δ2/24 ‖∇wm‖2. Then we study (recall (7.34)) the differen-
tial inequality

dy

dt
≤ c1‖f‖2 +

c2 Re3

δ4
y3.

Dividing both sides by (1 + y)3 ≥ 1, we obtain

dy

dt

1
(1 + y)3

≤ c1‖f‖2 +
c2 Re3

δ4
.

This equation can be explicitly integrated to get

1 + y(t) ≤ 1 + y(0)√
1 − (1 + y(0))2

[
c1

∫ t

0 ‖f(τ)‖2 dτ + c2Re3

δ4 t
] .

Consequently, a condition that bounds T ∗ from below is the following:

c1

∫ T∗

0

‖f(τ)‖2 dτ +
c2Re3

δ4
T ∗ ≤ 1

(1 + ‖∇w0‖2)2
. (7.35)

Remark 7.13. The same result can be written also as follows: there exists
ε = ε(T, f , δ, Re) > 0 such that if ‖∇w0‖ < ε and ‖f‖L2(0,T ;L2) < ε, then
{wm} is uniformly bounded in

L∞(0, T ; V ) ∩ L2(0, T ;D(A)). (7.36)

Remark 7.14. The result of existence is given for a fixed averaging radius δ. In
fact, the basic theory of differential inequalities implies that, if all the other
quantities (w0, Re, and f) are fixed, then the life-span of wm is, in the worst
case, at least, O(δ4). This limitation can be overcome and the life-span is
independent of δ [30]. Later in this section, we shall state this result, together
with several others whose proofs are a little bit more technical. We shall refer
to the bibliography of that section for more details.

Remark 7.15. (A simple observation on energy estimates.) To prove an energy-
type estimate (absolutely necessary for an existence theory, a stable compu-
tation, etc.), we multiply the equation of the model by Bw, where B is some
operator. Generally, we obtain an estimate of the form:

d

dt
(model’s kinetic energy) + (model’s energy dissipation)

≤ data + (cubic terms arising from the model’s nonlinearity)

Cubic terms can never be subsumed into quadratic terms (for large data
and long time). Thus, the only hope for a global theory is to construct the
operator B (often B is an approximate deconvolution operator) for which

(model’s nonlinearity(w), B(w)) = 0.
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This is the mathematical and physical approach of the above analysis, the
analysis of Chap. 8, and other work.

In view of applying the Aubin–Lions’ compactness Lemma 3.11 that we used
earlier, we need an estimate of the time derivative of wm. By comparison, i.e.
by isolating the ∂twm on the left-hand side, we have to estimate the following
quantity

|(∂twm,Wj)| ≤ |((wm · ∇)wm,Wj)| + 1
Re

|(Awm,Wj)|

+

∣∣∣∣∣
(
∇ ·

(
�− δ2

24
∆

)−1 [
δ2

12
∇wm∇wT

m

]
,Wj

)∣∣∣∣∣+ ∣∣(f ,Wj

)∣∣ .
Some care is needed to estimate the highly nonlinear term, while the others
are treated in a standard way (see, for instance, Galdi [121] and Temam [297]
for the space-periodic setting). This “bad” one can be estimated as follows:∣∣∣∣∣

(
∇ ·

(
�− δ2

24
∆

)−1 [
δ2

12
∇wm∇wT

m

]
,Wj

)∣∣∣∣∣
≤
∥∥∥∥∥∇ ·

(
�− δ2

24
∆

)−1 [
δ2

12
∇wm∇wm

]∥∥∥∥∥ ‖Wj‖

≤
∥∥∥∥∥
(
�− δ2

24
∆

)−1 [
δ2

12
∇wm∇wT

m

]∥∥∥∥∥
H1

‖Wj‖.

(7.37)

At this point we need the Sobolev embedding theorem, that we simply state.
Its proof (with weaker hypotheses) can be found in Adams [4].

Proposition 7.16 (Sobolev embedding). Let Ω be a bounded smooth sub-
set of �d and let f ∈ W 1,p(Ω), for p < d. Then, the number p∗ is well-defined
by the relation

1
p∗

=
1
p
− 1

d
,

and there exists a positive constant C = C(Ω, p, q) (independent of f) such
that

for each p ≤ q ≤ p∗ ‖f‖Lq ≤ C(Ω, p, q)‖f‖W 1,p ∀ f ∈ W 1,p(Ω). (7.38)

This also means that for p ≤ q ≤ p∗ we have W 1,p ↪→ Lq or, in other
words,that W 1,p is continuously embedded into Lq.
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Remark 7.17. The exponent p∗ is known as the Sobolev exponent. Note that
in Chap. 2 we used a particular case of this result. In general, if we set q = p∗

in inequality (7.38), then the estimate can be improved to

‖f‖Lp∗ ≤ C(Ω, p)‖∇f‖Lp ∀ f ∈ W 1,p(Ω).

This means that the Lp∗
-norm can be controlled just by the W 1,p-semi-norm

of f rather than with its complete norm. In particular, the latter is satisfied
also if f ∈ L1(K), for each compact set K ⊂ Ω, and just ∇f ∈ Lp.

A very fast way to guess the latter result may be that of scaling invariance.
This technique may be used to find very quickly interesting results, even if it
is not a proof. Let us show that if the latter inequality holds, then the only
possible exponent in the left-hand side is p∗. To verify this, let us suppose
that Ω = �d and set

fλ(x) = f(λx).

Thus, by applying the rule of change of variables in multiple integrals, the
inequality ‖f‖Lq ≤ C‖∇f‖Lp becomes (if it is true!)

‖f‖Lq ≤ Cλ(1+ d
q − d

p)‖∇f‖Lp.

This shows that necessarily q = p∗, if we want to have invariance with respect
to λ. This invariance is needed if we want the Sobolev embedding to hold with
a constant C independent of the function f.

It is clear that by induction (on the integer index k) it is possible to show
that

for each p ≤ q ≤ p∗, ‖f‖W k−1,q ≤ C(Ω, k, p, q)‖f‖W k,p , ∀ f ∈ W k,p(Ω).

We use will use this result in the following special case

W 2,3/2 ↪→ W 1,2.

To estimate the expression in (7.37) we shall also need some classical results
of elliptic regularity. For elliptic regularity we essentially need the following
result that (in all its generality) dates back to the work of Agmon, Douglis,
and Nirenberg [5, 6].

Proposition 7.18. If f ∈ Lp(Ω), where Ω ⊂ �d is a smooth open set, and
1 < p < +∞, then the variational solution u of the following boundary-value
problem {

u − ∆u = f in Ω,

u = 0 on ∂Ω,

belongs to W 2,p. In particular there exists c > 0, independent of u and f such
that

‖u‖W 2,p ≤ c‖f‖Lp.
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Remark 7.19. The above proposition still holds if the Laplacian is replaced
by a more general elliptic operator, such as the Stokes operator (see Cat-
tabriga [56] in this case). Complete details on the precise assumptions on the
operator and on the regularity of the boundary ∂Ω can be found in the clas-
sical monograph by Nečas [245]. Note that it is essential to require p being
different from 1 and +∞. In the limit cases it is known that Proposition 7.18
may be false. Other results concerning the Hölder regularity C2,α for u if
f ∈ C0,α can be found again in [245].

By using the above proposition, the term in (7.37) is then bounded by

c

∥∥∥∥∥
(

I − δ2

24
∆

)−1 [
δ2

12
∇wm∇wT

m

]∥∥∥∥∥
W 2,3/2

‖Wj‖ ≤ c‖∇wm∇wT
m‖L3/2‖Wj‖.

Next, we use the convex-interpolation inequality (2.26). The latter, together
with the Sobolev embedding H1(Q) ↪→ L6(Q), implies that the term in (7.37)
may be bounded by

c‖∇wm‖2
L3‖Wj‖ ≤ c‖∇wm‖ ‖∇wm‖L6‖Wj‖ ≤ c‖∇wm‖ ‖Awm‖‖Wj‖.

Multiplying (7.27) by dgi
m(t)/dt, summing over i = 1, . . . , m, and using the

last inequality (together with well-known estimates for the other terms), we
obtain

1
2Re

d

dt
‖∇wm‖2 + ‖∂twm‖2 ≤ c(1 + ‖∇wm‖2)‖Awm‖2 + c‖∇wm‖6 + c‖f‖2.

The last differential inequality, together with (7.36), shows that ∂twm is uni-
formly bounded in L2(0, T ∗; L2).

We can now use the Aubin–Lions’ Lemma 3.11 with

p = 2, X1 = D(A), X2 = V, and X3 = H.

Thus, it is possible to extract from {wm} a subsequence (relabeled for nota-
tional convenience again as {wm}) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wm
∗
⇀ w in L∞(0, T ∗; V )

wm ⇀ w in L2(0, T ∗;D(A))

wm → w in L2(0, T ∗; V ) and a.e. in (0, T )× Q.

(7.39)

With this convergence it is easy to pass to the limit in (7.27) and to prove
that w is a solution to (7.18), (7.19). In fact, without loss of generality, using
the same subsequence, we have also

∂twm ⇀ ∂tw in L2(0, T ∗; L2).
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By using a classical interpolation argument (see Lions and Magenes [222]),
the function w belongs also to C(0, T ∗; V ). The only difficult part is to show
that w satisfies (7.26), and hence it is a strong solution. The passage to the
limit is done in a standard way (the same as for the Navier–Stokes equations
(see, for instance, Chap. 2) for all terms appearing in (7.27), except for((

�− δ2

24
∆

)−1 [
δ2

12
∇wm∇wT

m

]
,∇Wk

)
.

To pass to the limit in the above expression, we recall (see, for instance,
Lemma 6.7, Chap. 1, in Lions [221]) that if ∇f belongs to both L∞(0, T ∗; L2)
and L2(0, T ∗; H1), then Hölder inequality implies that

∇f ∈ L4(0, T ∗; L3).

Thus, ∇wm∇wT
m is bounded in L2(0, T ∗; L3/2), and the third relation in

(7.39) implies that

∇wm∇wT
m ⇀ ∇w∇w in L2(0, T ∗; L3/2).

This implies that ∀φ ∈ C∞
per(Q)((

�− δ2

24∆
)−1 [

δ2

12∇wm∇wT
m

]
,∇φ

)

=
(

δ2

12∇wm∇wm,
(
�− δ2

24∆
)−1

∇φ

)
→

(
δ2

12∇w∇w,
(
�− δ2

24∆
)−1

∇φ

)
in L2(0, T ∗). The proof concludes with a density argument. ��
The solutions we have proved to exist are rather regular. It is also possible to
prove a uniqueness result.

Theorem 7.20. Under the same hypotheses as in Theorem 7.10, there exists
at most one strong solution to (7.18), (7.19).

Proof. As usual let us suppose that we have two solutions w1 and w2 relative
to the same external force f and the same initial datum w0. Furthermore,
let us suppose that both the solutions exist in some interval [0, T ]. By using
a technique we have adopted several times, we subtract the equation satisfied
by w2 from that one satisfied by w1, and we multiply the equations by Aw,
where w := w1−w2. All the terms can be treated as in the proof of uniqueness
for strong solutions to the NSE. The only term that requires some care is the
additional one corresponding to the SFS stress tensor:(

∇ ·
(
�− δ2

24
∆

)−1
δ2

12
[∇w1∇wT

1 −∇w2∇wT
2

]
, Aw

)
.
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By adding and subtracting ∇ ·
(
�− δ2

24∆
)−1 [

δ2

12∇w1∇wT
2

]
, we get(

∇ ·
(
�− δ2

24
∆

)−1
δ2

12
[∇w1∇wT −∇w∇wT

2

]
, Aw

)
. (7.40)

The first term in (7.40) can be estimated as follows:

I1 =

∣∣∣∣∣
(
∇ ·

(
�− δ2

24
∆

)−1 [
δ2

12
∇w1∇wT

]
, Aw

)∣∣∣∣∣
≤
∥∥∥∥∥
(
�− δ2

24
∆

)−1 [
δ2

12
∇w1∇wT

]∥∥∥∥∥
H2

‖∇Aw‖H−2

≤ c
∥∥∇w1∇wT

∥∥ ‖∇w‖ ≤ c‖∇w1‖L4‖∇w‖L4‖∇w‖.

By using again the interpolation inequality (7.32), we obtain

I1 ≤ c‖∇w1‖L4‖∇w‖5/4‖Aw‖3/4 ≤ 1
8Re

‖Aw‖2 + c‖∇w1‖8/5
L4 ‖∇w‖2.

The other term leads to a very similar expression

I2 =

∣∣∣∣∣
(
∇ ·

(
�− δ2

24
∆

)−1 [
δ2

12
∇w∇wT

2

]
, Aw

)∣∣∣∣∣
≤ 1

8Re
‖Aw‖2 + c‖∇w2‖8/5

L4 ‖∇w‖2.

For the sake of completeness, we shall estimate the other nonlinear term

I3 = |((w1 · ∇)w1 − (w2 · ∇)w2, Aw)|

(which is also present in the Navier–Stokes equations) essentially as in the
proof of Theorem 2.21. Again, by adding and subtracting the term (w2 ·∇)w1,
we obtain

I3 = |((w · ∇)w1 − (w2 · ∇)w, Aw)| .
Using again estimate (7.29), we obtain

|((w2 · ∇)w, Aw)| ≤ ‖∇w2‖ ‖∇w‖1/2‖Aw‖3/2

≤ 1
8Re

‖Aw‖2 + c‖∇w2‖4‖∇w‖2.
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The other term is easier to handle, since

I4 = |((w · ∇)w1, Aw)| ≤ ‖w‖L4‖w1‖L4‖Aw‖

≤ c‖w1‖L4‖Aw‖ ‖∇w‖ by the Sobolev embedding theorem

≤ 1
8Re

‖Aw‖2 + c‖∇w1‖2
L4‖∇w‖2 by the Young inequality.

Collecting all the above estimates, we obtain

d

dt
‖∇w‖2 +

1
Re

‖Aw‖2

≤ c
(
‖∇w1‖8/5

L4 + ‖∇w2‖8/5
L4 + ‖∇w2‖4 + ‖∇w1‖L4

)
‖∇w‖2.

We recall that w(x, 0) = w1(x, 0) − w2(x, 0) = 0. By (7.36), we get(
‖∇w1‖8/5

L4 + ‖∇w2‖8/5
L4 + ‖∇w2‖4 + ‖∇w1‖L4

)
∈ L1(0, T ).

Since ‖u‖ ≤ 1/λ1 ‖∇u‖, for each u ∈ V, the Gronwall lemma directly implies
that w ≡ 0 in V. ��

7.2.2 On the Possible Breakdown of Strong Solutions
for the Rational LES Model

In this section we introduce some criteria for the breakdown (and also for
the continuation) of strong solutions, and we report some numerical results
recently obtained. We compare these criteria with others in the literature. We
shall use them in interpreting the numerical simulations.

The results of this section follow closely the guidelines of Leray’s proof
of the theorem in the epoch of irregularity cited in Chap. 2. For simplicity
(although it is easy to include a smooth external force), we set f = 0. We
start with the following theorem:

Theorem 7.21. Let w be a strong solution in the time interval [0, T ). If it
cannot be continued in (7.25) to t = T , then we have

lim
t→T

−
‖∇w(t)‖ = +∞. (7.41)

Furthermore, we have the following blow-up estimate:

‖∇w(t)‖ ≥ Cδ

Re3/4

1
(T − t)1/4

, t < T . (7.42)
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Proof. We observe that if f = 0, the estimate (7.35) of the life span of the
strong solution such that w(x, 0) = w0(x) can be replaced by the more ex-
plicit

T ∗ ≥ Cδ4

Re3‖∇w0‖4
,

as can easily be seen by using the same technique as that on p. 163. We now
prove (7.41) by contradiction. Let us assume that (7.41) does not hold. Then,
there would exist an increasing sequence of numbers in (0, T ) {tk}k∈� (such
that tk ↑ T ) and a positive number M such that

‖∇w(tk)‖ ≤ M.

Since w(tk) ∈ H1, by using Theorem 7.10 we may construct a solution w with
initial datum w(tk) in a time interval [tk, tk + T ∗), where

T ∗ ≥ C

‖∇w(tk)‖4
≥ C

M4
:= T 0.

By using the uniqueness Theorem 7.20, we have w ≡ w in [tk, tk + T 0). We
may now select k0 ∈ � such that tk0 + T 0 > T to contradict the assumption
on the boundedness of ‖∇w(t)‖. This proves (7.41).

To obtain the estimate on the growth of ‖∇w(t)‖, we argue as in the
proof of Theorem 7.10. We multiply (7.18) by Aw, and we get that Y (t) :=
‖∇w(t)‖2 satisfies, in the time interval [0, T ),

dY (t)
dt

≤ c Re3

δ4
[Y (t)]3.

Integrating the above equation, we find

1
‖∇w(t)‖4

− 1
‖∇w(τ)‖4

≤ c Re3

δ4
(τ − t) 0 < t < τ < T .

Letting τ → T , and recalling (7.41), we obtain (7.42). ��
In the case of the Rational LES model it seems difficult to obtain regularity of
solutions that satisfy condition (7.43) on the velocity. In fact, we recall that
a well-known result of Leray–Prodi–Serrin states that if a weak solution u of
the NSE satisfies

u ∈ Lr(0, T ; Ls(Ω)) for
2
r

+
3
s

= 1, and s ∈ (3,∞], (7.43)

then (see p. 57) it is unique and smooth. For full details, see Serrin [275].
By using Theorem 7.21, we can prove, for the Rational LES model,

the following blow-up criteria, involving appropriate Lr(0, T ; Ls)-norms of
∇w.
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Theorem 7.22. Let w be a strong solution to (7.18), (7.19), and suppose that
there exists a time T such that the solution cannot be continued in the class
(7.25) to T = T . Assume that T is the first such time. Then∫ T

0

‖∇w(τ)‖α
Lβ dτ = +∞,

for
2
α

+
3
β

= 2, 1 ≤ α < ∞, 3/2 < β ≤ ∞.

(7.44)

Remark 7.23. Condition (7.44) is the same as that involved in the study of the
breakdown (or the global regularity) of the 3D NSE; see Beirão da Veiga [19]
for the Cauchy problem (also in �n) and Berselli [27] for the initial boundary
value problem (recall condition on p. 120). In the limit case β = ∞, condi-
tion (7.44) is related to the Beale–Kato–Majda [18] criterion for the 3D Euler
equations.

Proof (of Theorem 7.22). The proof is done by contradiction. We assume
that ∫ T

0

‖∇w(τ)‖α
Lβ dτ ≤ C < ∞ (7.45)

and use estimates similar to those derived in the existence theorem. Let us
suppose that [0, T ) is the maximal interval of existence of the unique strong
solution starting from w0 at time t = 0. We multiply (7.18) by (recall Re-
mark 7.8)

Aw = w +
δ2

24
Aw = w − δ2

24
∆w,

and we obtain, with suitable integrations by parts,

1
2

d

dt

(
‖wm‖2 +

δ2

24
‖∇w‖2

)
+

1
Re

(
‖∇w‖2 +

δ2

24
‖Aw‖2

)

≤ δ2

24
|((w · ∇)∇w, ∆w)| +

∣∣∣∣∣
〈
A−1

[
δ2

12
∇w∇wT

]
,∇Aw

〉
V,V ′

∣∣∣∣∣ ,
(7.46)

where 〈 . , . 〉V,V ′ denotes the pairing between V and its topological dual V ′.
The first term on the right-hand side can be estimated with an integration by
parts. We have, in fact,∫

Q

(w · ∇)w ∆w dx = −
3∑

i,j,k=1

∫
Q

∂wj

∂xk

∂wi

∂xj

∂wi

∂xk
dx

−
3∑

i,j,k=1

∫
Q

wj
∂2wi

∂xj∂xk

∂wi

∂xk
dx.

(7.47)
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The term

3∑
i,j,k=1

∫
Q

wj
∂2wi

∂xj∂xk

∂wi

∂xk
dx =

3∑
i,j,k=1

1
2

∫
Q

wj
∂

∂xj

(
∂wi

∂xk

)2

dx

is identically zero, as can be seen with another integration by parts, since
∇ ·w = 0.

The other term on the right-hand side of (7.47) can be estimated in the
following manner, for 3/2 < β ≤ ∞:∣∣∣∣∣∣

3∑
i,j,k=1

∫
Q

∂wj

∂xk

∂wi

∂xj

∂wi

∂xk
dx

∣∣∣∣∣∣ ≤ c‖∇w‖2
L2β′‖∇w‖Lβ for

1
β

+
1
β′ = 1.

Then, we use the interpolation inequality (2.26) (observe that 1 ≤ β′ < 3,
and if β′ = 1 there is nothing to do), together with the Sobolev embedding
H1(Q) ⊂ L6(Q), to obtain∣∣∣∣∣∣

3∑
i,j,k=1

∫
Q

∂wj

∂xk

∂wi

∂xj

∂wi

∂xk
dx

∣∣∣∣∣∣ ≤ c‖∇w‖ 2β−3
β ‖∆w‖ 3

β ‖∇w‖Lβ .

By using Young’s inequality with exponents x = 2β/3, x′ = 2β/(2β − 3), we
obtain∣∣∣∣∣∣

3∑
i,j,k=1

∫
Q

∂wj

∂xk

∂wi

∂xj

∂wi

∂xk
dx

∣∣∣∣∣∣ ≤ 1
4 Re

‖∆w‖2 + c‖∇w‖
2β

2β−3

Lβ ‖∇w‖2. (7.48)

The other term in (7.46) can be estimated as follows:〈
A−1

[
δ2

12
∇w∇wT

]
,A∇w

〉
V,V ′

=
δ2

12
(∇w∇wT ,∇w),

and the latter can be treated as in (7.48).
The above estimates lead to

d

dt

(
‖wm‖2 +

δ2

24
‖∇w‖2

)
≤ c‖∇w‖α

Lβ‖∇w‖2, where α =
2β

2β − 3
,

and hence α, β are as in (7.44). The Gronwall lemma, together with (7.45),
imply that

∇w ∈ L∞(0, T ; L2).

The latter condition implies (from Theorem 7.21) that the solution w can
be uniquely continued beyond T , and this contradicts the maximality of the
existence interval [0, T ). ��
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Remark 7.24. The same techniques may be used to prove that there exists
η > 0 such that, if

sup
0<t<T

‖∇w(t)‖L3/2 < η,

then the strong solution exists up to T . The constant η does not depend
on w but only on Re, δ, and L. The proof easily follows by observing
that∣∣∣∣∣∣

3∑
i,j,k=1

∫
Q

∂wj

∂xk

∂wi

∂xj

∂wi

∂xk
dx

∣∣∣∣∣∣ ≤ c‖∇w‖2
L6‖∇w‖L3/2 ≤ c‖Aw‖2‖∇w‖L3/2 .

Consequently, in

1
2

d

dt

(
‖w‖2 +

δ2

24
‖∇w‖2

)
+

1
Re

(
‖∇w‖2 +

δ2

24
‖Aw‖2

)
≤ c‖Aw‖2‖∇w‖L3/2

we can apply the Gronwall lemma to deduce a bound for ‖∇w‖L∞(0,T ;L2),
provided

η <
δ2

c 24Re
.

Remark 7.25. From the Sobolev embedding theorem, we have W 1,p ⊂ Lp∗
, for

1 ≤ p < 3. Consequently, if ∇w belongs to Lα(0, T ; Lβ) (with α, and β as in
Theorem 7.22, β < 3), then (2.31) is satisfied.

By using some classical results on elliptic systems and on singular integrals,
we can also introduce breakdown criteria involving the vorticity ω = curlw.
We start by observing that, for a divergence-free function w, we have −∆w =
curl(curlw), and the following estimate holds:

‖∇w‖Lp ≤ cp‖curlw‖Lp for 1 < p < ∞, (7.49)

with cp a positive constant depending only on p. The above estimate follows
by observing that the Biot–Savart law implies

w(x) =
∫

G(x − x′) curlw(x′) dx′, (7.50)

where G(y) is given explicitly by

G(y) = ∇
⎡⎣ 1

4π
lim

N→∞

∑
k∈�3, |k|≤N

(
1

|y + Lk| +
1

|kL|
)⎤⎦ .

By taking the gradient of (7.50) (with respect to the variable x), we obtain
that

∇w = P (curlw),
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with P a (linear) singular operator of Calderón–Zygmund type. The estimate
(7.49) follows by using the properties of such operators; see Stein [283].

Using estimate (7.49) and Theorem 7.22, one can easily prove the following
result:

Corollary 7.26. Let w be a strong solution to (7.18), (7.19) in the time in-
terval [0, T ). If it cannot be continued in (7.25) to t = T , then∫ T

0

‖curlw(τ)‖α
Lβ dτ = ∞ for

2
α

+
3
β

= 2, 1 < α < ∞, 3/2 < β < ∞.

This breakdown criterion is very interesting from a physical point of view. In
fact, if β = 2, and consequently α = 4, we have the blow-up criterion involving
the so-called enstrophy, that is, the L2-norm of the vorticity field:∫ T

0

‖curlw(τ)‖4 dτ = +∞.

Energy Budget and Existence Proof

For the Rational LES model it will be interesting to see if it is possible to
have an energy balance and existence of weak solutions, provided we add
a Smagorinsky dissipative term (a mixed Rational LES model). This question
has been analyzed by Iliescu [164] in the space-periodic case. In [164] it is
shown that for the Rational LES model it is enough to add the following term
on the left-hand side:

−∇ · (Cδ2|∇w|2µ∇w) for µ ≥ 1
10

.

The nonlinear term derived from the turbulent stress-tensor can be estimated
by using results of elliptic regularity to yield the following energy estimate:

1
2

d

dt
‖w‖2 +

1
Re

‖∇w‖2 + C‖∇w‖2+2µ
L2+2µ(1 − c‖∇w‖1−β) ≤ c1‖f‖2,

where β ∈ (0, 1). Then, by using appropriate smallness of the data (‖w0‖ < ε
and ‖f‖L2(0,T ;L2) ≤ ε) it is possible to prove the global bound for w

sup
0<t<T

‖w(t)‖2 +
∫ T

0

‖∇wm(τ)‖2dτ +
∫ T

0

‖∇wm(τ)‖2+2µ
L2+2µdτ ≤ C t ∈ [0, T ],

for a constant C that depends on Re, δ,w0, and f .
The energy balance together with estimates similar to those obtained for

the Gradient LES model allow one to prove the existence of weak solutions,
at least for small enough data. Again the crucial point is to show that the
operator
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A(u) = − 1
Re

∆u −∇ · (Cδ2|∇u|2µ∇u) + ∇ ·
(
�− δ2

24
∆

)−1 [
δ2

12
∇u∇uT

]
is monotone, in order to pass to the limit along Galerkin sequences.

It is interesting to note that due to the regularizing effect of the operator
(�− δ2

24∆)−1, here a dissipative term much weaker than that appearing in the
Gradient LES model is required. Recall that in that case the existence results
have been proved for µ = 1/2 and they clearly hold also for µ ≥ 1/2.

The results in [164] have recently been extended to the nonperiodic case
by using also the theory of locally-strongly-monotone operators [30].

Miscellaneous Results for the Rational LES Model

In this section we briefly review some of the recent results that have been
proved for the Rational LES model. These results require more involved math-
ematical results, so we quote them without proofs. These results seem inter-
esting since they prove many of the experimental observations for general flow
problems.

First, we collect in one theorem several results proved in Berselli and
Grisanti [31] and in Barbato, Berselli, and Grisanti [12]. In these papers the
authors proved full regularity of the strong solutions and also consistency re-
sults, i.e. the convergence of the solution to the Rational LES model to the
strong solutions of the NSE as the averaging radius δ goes to zero. (In the
sequel we denote by wδ the solution to (7.18), (7.19) corresponding to a given
δ > 0.)

Theorem 7.27. Let wδ
0 ∈ H1 and f ∈ L2(0, T ; L2). Then the following results

hold:

(a) The life-span of a strong solution to the Rational LES model depends on
‖∇wδ

0‖L2, Re, and f , but it is independent of δ.
(b) If ‖∇wδ

0‖L2 is small enough, then a unique strong solution exists on
[0, +∞).

(c) If furthermore w0 ∈ C∞(Q), and if wδ is a strong solution to the Rational
LES model in [0, T ∗[, then

wδ ∈ C∞(]0, T ∗[×Q).

(d) Let wδ be a strong solution to (7.18)-(7.19) and u be a solution to the
NSE, in the common time interval [0, T ]. Suppose that both initial data
are smooth (say wδ(x, 0) and u(x, 0) belong to H2) and that

∃ c1 > 0 such that ‖wδ(x, 0) − u(x, 0)‖L2 ≤ c1δ
2.

Then we have, for some c2 > 0,

sup
t∈[0,T ]

‖wδ(x, t) − u(x, t)‖L2 ≤ c2 δ2.
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If, in addition,

∃ c3 > 0 such that ‖wδ(x, 0) − u(x, 0)‖H1 ≤ c3 δ,

then we have, for some c4 > 0,

sup
t∈[0,T ]

‖wδ(x, t) − u(x, t)‖H1 ≤ c4δ.

7.2.3 Numerical Validation and Testing of the Rational LES Model

In [12] we discovered that some classes of exact solution to the NSE (3D
generalization of Ross Ethier and Steinman [265] of the 2D Taylor solutions)
are also classical solutions to both the Gradient and the Rational LES models.
These exact solutions are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = [A sin(πz) + C cos(πy)] e−π2t/Re

u2 = [B sin(πx) + A cos(πz)] e−π2t/Re

u3 = [C sin(πy) + B cos(πx)] e−π2t/Re

p = −[BC cos(πx) sin(πy) + AB sin(πx) cos(πz)

+AC sin(πz) cos(πy)] e−2π2t/Re,

(7.51)

where A, B, and C are arbitrary constants.
Straightforward calculations show how the SFS stress tensor τ = uuT −

uuT vanishes identically when evaluated on these solutions. The fact that the
NSE and the Rational LES model share similar solutions also suggests that
the two models have some common mathematical structure.

The family of solutions (7.51) is very simple since it involves only one
Fourier mode. Although they certainly do not represent turbulence, they can be
useful in debugging and validating complex codes. For a detailed description
of numerical validation and testing of LES models (including the Rational and
Gradient LES models), the reader is referred to Chap. 12.

Note also that the flow in (7.51) is the viscous counterpart of the classical
ABC/Arnold–Beltrami–Childress flow, that has been studied by Arnold [9],
Beltrami [23], and Childress [60] in connection with problems of stability and
breakdown of smooth solutions for the Euler equations.

In [28] the well-known class of Taylor–Green solutions is analyzed in the
context of eddy viscosity LES models. Recall that the so called “Taylor–Green
vortex” is widely used as a test case since with its symmetries it can be
implemented in a rather efficient way. The solution starting from this vortex
is interesting for the complexity of the small scales generated [44] and also for
the detection of possible singularities in 3D fluids, see the review in Majda
and Bertozzi [227].
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To perform physically meaningful calculations the author followed the clas-
sical approach of Green and Taylor [138] and considered the flow developing
from the very simple initial datum:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u1(x1, x2, x3, 0) = A cos(ax1) sin(bx2) sin(cx3),

u2(x1, x2, x3, 0) = B sin(ax3) cos(bx2) sin(cx3),

u3(x1, x2, x3, 0) = C sin(ax1) sin(bx2) cos(cx3),

(7.52)

where, to satisfy the divergence-free constraint, it is necessary to require that
a A + b B + c C = 0.

This initial datum, with only one frequency (in each space direction), may
generate a complex flow. In [28] is shown that the period doubling of this
flow is well reproduced by the Rational LES model. Other results regarding
the mean value of the pressure show how the Rational LES model seem to be
validated, while the Gradient LES model exhibits some divergences. Recall
that this kind of analysis was introduced by Taylor and Green in [138] with
the “philosophical idea” that:

“It appears that nothing but a complete solution of the equations of
motion in some special case will suffice to illustrate the process of
grinding down of large eddies into smaller ones...”

In [28] it is also shown that symmetries of the flow are still present if the
simulation is performed with the Rational LES model (instead of the full
3D NSE as in the study of Orszag [247].) This suggests how to reduce the
computational time if the simulation is done by means of a spectral Galerkin
method in a periodic box.

Numerical Validation and Testing

A careful numerical validation and testing of the Rational LES model was
started by Iliescu et al. [169] for the 3D lid-driven cavity problem. The authors
investigated the behavior of the total kinetic energy for the Gradient and
Rational LES models. In all the numerical tests, the Rational LES model was
much more stable than the Gradient LES model.

Further numerical tests for the two LES models were carried out by
John [173, 175, 176] for the mixing layer test case. Both LES models were
equipped with the same extra eddy viscosity term. It is interesting to note
that the Rational LES model with the O(δ3) eddy viscosity term of Iliescu
and Layton [170] (see Chap. 4),

νT = µ δ ‖w − w‖,

outperformed the other LES models.
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Iliescu and Fischer started a thorough comparison of the Rational and Gra-
dient LES models in the numerical simulation of turbulent channel flows [106,
165, 166]. These results are presented in detail in Chap. 12 and they also con-
verge to the same conclusion: the Rational LES model outperforms (in terms
of numerical stability and accuracy) the Gradient LES model.

7.3 The Higher-order Subfilter-scale Model (HOSFS)

In the previous section we derived the Rational LES model by using an asymp-
totic wavenumber expansion of order O(δ2) of the terms appearing in the SFS
stress tensor τ = uuT −uuT . Since we dropped all terms formally O(δ4), the
Rational LES model does not include the turbulent fluctuations term u′u′T
which is believed to be important in the physics of turbulent flow. One way
to overcome this drawback is to consider a higher-order asymptotic expan-
sion in the wavenumber space. By using such an approximation, Berselli and
Iliescu introduced in [33] the Higher-order Subfilter-scale (HOSFS) model. In
this section, we present a careful mathematical analysis of the HOSFS model.
We note that the mathematical techniques involved in the proof of existence
of strong solutions for the HOSFS model, although essentially following the
same path as in the mathematical analysis of the Rational LES model, will
require more powerful tools.

7.3.1 Derivation of the HOSFS Model

By following the same technique as in the derivation of the Rational LES
model, we approximate the Fourier transform of the Gaussian filter ĝδ(k) by
using a higher-order (0,2)-Padé rational approximation:

e−βx =
1

1 + βx + 1
2β2x2

+ O(x3).

Thus, we get

ĝδ(k) =
1

1 + δ2

24 |k|2 + δ4

1152 |k|4
+ O

(
δ6|k|6). (7.53)

By using a Taylor series approximation, we also get

1
ĝδ(k)

= 1 +
δ2

24
|k|2 +

δ4

1152
|k|4 + O

(
δ6|k|6). (7.54)

Thus, by using (7.54) in the usual expression

û(k) =
1

ĝδ(k)
û(k),
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and dropping all terms formally of order O(δ6) and higher, we get (in index4

notation)

ui = ui − δ2

24
∇2ui +

δ4

1152
∇4ui + 2

δ4

1152
∇2

k∇2
l ui

= ui − δ2

24
∆ui +

δ4

1152
∆2ui,

(7.55)

where

∆u = ∇2u :=
3∑

j=1

∂2u
∂x2

j

, ∇4u :=
3∑

j=1

∂4u
∂x4

j

,

∇2
k∇2

l u :=
3∑

k,l=1;k �=l

∂4u
∂x2

k∂x2
l

, ∆2u = ∇4u + 2∇2
k∇2

l u.

By using (7.55), we get

upuq = upuq − δ2

24
up∇2uq − δ2

24
∇2upuq +

δ4

1152
up∇4uq +

δ4

1152
∇4upuq

+2
δ4

1152
∇2

k∇2
l upuq + 2

δ4

1152
up∇2

k∇2
l uq +

δ4

576
∇2up∇2uq.

Now with the aid of (7.53), we get

upuq =
(

δ4

1152
∆2 − δ2

24
∆ + �

)−1

(upuq)

≈ upuq +
(

δ4

1152
∆2 − δ2

24
∆ + �

)−1

[
δ2

24
∆(upuq) − δ4

1152
∆2(upuq) − δ2

24
up∇2uq − δ2

24
∇2upuq

+
δ4

1152
up∇4uq +

δ4

1152
∇4upuq + 2

δ4

1152
∇2

k∇2
l upuq

+2
δ4

1152
up∇2

k∇2
l uq +

δ4

576
∇2up∇2uq

]
. (7.56)

We need to expand some of the terms in this formula. After a simple calcula-
tion, we get

∇4(upuq) = ∇4upuq + 4∇3up∇uq + 6∇2up∇2uq + 4∇up∇3uq + up∇4uq,

and

∇2
k∇2

l (upuq) = ∇2
k∇2

l upuq + 2∇k∇2
l up∇kuq + ∇2

l up∇2
kuq + 2∇2

k∇lup∇luq

+ 4∇k∇lup∇k∇luq + 2∇lup∇2
k∇luq + ∇2

kup∇2
l uq

+ 2∇kup∇k∇2
l uq + up∇2

k∇2
l uq.

4 In this section we prefer to use the index notation since some formulas may be
misunderstood, if written in a compact way.
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Thus, by replacing the two relations in (7.56), we get the higher-order SFS
(HOSFS) model:

τpq =
(

δ4

1152
∆2 − δ2

24
∆ + �

)−1 [
δ2

12
∇up∇uq − δ4

1152
(4∇3up∇uq

+ 4∇2up∇2uq + 4∇up∇3uq) − 2
δ4

1152
(4∇k∇2

l up∇kuq + 2∇2
l up∇2

kuq

+ 4∇k∇lup∇k∇luq + 4∇lup∇2
k∇luq)

]
=
(

δ4

1152
∆2 − δ2

24
∆ + �

)−1 [
δ2

12
∇up∇uq − δ4

288
(∇3up∇uq + ∇2up∇2uq

+ ∇up∇3uq) − δ4

288
(2∇k∇2

l up∇kuq + ∇2
l up∇2

kuq

]
(7.57)

+ 2∇k∇lup∇k∇luq + 2∇lup∇2
k∇luq)

=
(

δ4

1152
∆2 − δ2

24
∆ + �

)−1 [
δ2

12
∇up∇uq − δ4

288
(∇̃3up∇̃uq + ∆̃up∆̃uq

+ ∇̃up∇̃3uq)
]

,

where, for simplicity of exposition, we have used the following notation:

∇̃3up∇̃uq := ∇3up∇uq + 2∇k∇2
l up∇kuq

∆̃up∆̃uq := ∇2up∇2uq + ∇2
l up∇2

kuq + 2∇k∇lup∇k∇luq

∇̃up∇̃3uq := ∇up∇3uq + 2∇lup∇2
k∇luq.

Remark 7.28. We note that the need for a higher-order approximation (to
O(δ6)) to account for u′u′T was first advocated in [164] and independently
in [175]. A similar approach was also used in De Stefano, Denaro, and Ric-
cardi [86] and Katopodes, Street, and Ferziger [182].

7.3.2 Mathematical Analysis of the HOSFS Model

As usual, in our analysis we shall uncouple the problem of wall modeling and
boundary conditions from the interior closure problem, by using the space-
periodic setting. We shall use the same function spaces and notation intro-
duced in Sect. 7.2.1.

As we shall see, the nonlinear term now requires smoother functions to be
correctly evaluated and estimated.

Definition 7.29. We say that the vector w is a strong solution to the model
with the HOSFS stress tensor (7.57) if it has the following regularity:

w ∈ L∞(0, T ;D(A)) ∩ L2(0, T ;D(A3/2)) ∂tw ∈ L2(0, T ;D(A1/2))
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and satisfies

d

dt
(w, φ)+

1
Re

(∇w,∇φ) + (∇ · (ww), φ)

−
((

�− δ2

24
∆ +

δ4

1152
∆2

)−1 [
δ2

12
∇w∇w

− δ4

288
(∇̃3w∇̃w + ∆̃w∆̃w + ∇̃w∇̃3w)

]
,∇φ

)
= (f , φ),

for each φ ∈ C∞, with ∇ · φ = 0.

Note that since in the HOSFS model we have terms that involve higher-
order derivatives, we need rather smooth functions to give meaning to these
terms. Recall that, on the other hand, in the Gradient and Rational LES
models, there are just terms involving products of first-order derivatives. This
is the main reason for the increase of regularity stated in the above defini-
tion.

Theorem 7.30. Assume w0 ∈ D(A) and f ∈ L2(0, T ;D(A1/2)). Then there
exists a strictly positive T ∗ = T ∗(w0, Re, f) such that there exists a strong
solution to the HOSFS model in [0, T ∗).

For details of the proof, see [33]. Here we only sketch the essential steps in
the proof of the local existence of smooth solutions for the HOSFS model, by
showing the a priori estimates that can be derived.

Again, the life span could in principle depend also on δ but it is possible
to show that it is independent of it.

Proof (of Theorem 7.30). We construct a solution by solving problems for ap-
proximate Faedo–Galerkin functions wm(x, t) =

∑m
k=1 gi

m(t)Wi(x), satisfying
for k = 1, . . . , m,

d

dt
(wm,Wk) +

1
Re

(∇wm,∇Wk) + (∇ · (wm wm),Wk)

−
((

�− δ2

24
∆ +

δ4

1152
∆2

)−1 [
δ2

12
∇wm∇wm − δ4

288
(∇̃3wm∇̃wm

+∆̃wm∆̃wm + ∇̃wm∇̃3wm)
]

,∇Wk

)
= (f ,Wk).

(7.58)

We use, as test function in (7.58), the function A2wm (namely, we multiply
by λ2

kWk and perform summation over k). We obtain
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Q

∂twmA2wm dx =
1
2

d

dt
‖Awm‖2,

1
Re

∫
Q

AwmA2wm dx =
1

Re
‖A3/2wm‖2.

The usual nonlinear term can be estimated as follows (see Lemma 10.4 in Con-
stantin and Foiaş [74] and the definition of fractional powers of A previously
given):

|AB(u,v)| ≤ c‖Au‖ ‖A3/2v‖,
where B(u,v) is the usual nonlinear operator defined by B(u,v) = P (u ·∇v).
Consequently,∫

Q

B(wm,wm)A2wm dx ≤ c‖Awm‖ ‖A3/2wm‖ ‖Awm‖

≤ c‖Awm‖2 ‖A3/2wm‖.
The most delicate term is the nonlinear term deriving from the LES modeling.
For simplicity, we define the following fourth-order linear differential operator:

L := �− δ2

24
∆ +

δ4

1152
∆2.

The operator L acts on D(A2), with values in H. With this notation, the term
to be estimated (the extra stress-tensor) becomes

∇ · L−1

(
δ2

12
∇wm∇wm − δ4

288
(∇̃3wm∇̃wm + ∆̃wm∆̃wm + ∇̃wm∇̃3wm)

)
.

Multiplying by A2wm and integrating by parts over Q, we obtain(
L−1

[
δ2

12
∇wm∇wm − δ4

288
(∇̃3wm∇̃wm + ∆̃wm∆̃wm + ∇̃wm∇̃3wm)

]
∇A2wm

)
.

It is enough to estimate terms with the higher-order derivatives, since the first
one is easier. We have∣∣∣(L−1(∇̃3wm∇̃wm),∇A2wm

)∣∣∣ = ‖L−1(∇̃3wm∇̃wm)‖H4‖∇A2wm‖H−4 .

Furthermore, by recalling that the bi-Laplacian acts as an isomorphism be-
tween L2 and H4, we obtain

‖∇̃3wm∇̃wm‖ ‖∇wm‖ ≤ C ‖∇3wm‖ ‖∇wm‖L∞‖∇wm‖.
At this point we turn the Hs-bound into an L∞-bound. We can do this with
the aid of a result of Morrey.
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Proposition 7.31 (Morrey). Let u ∈ W 1,p(�d), with p > d. Then u ∈
L∞(�d) and

‖u‖L∞ ≤ C‖u‖W 1,p

with C a constant independent of u. Furthermore, the following inequality
holds:

|u(x) − u(y)| ≤ C|x − y|α‖∇u‖W 1,p α = 1 − d

p
.

Remark 7.32. First, the reader may note that the case p > d was not covered
by the Sobolev embedding Theorem (7.38). Further, as a simple corollary, we
can deduce that

if
1
p
− m

d
< 0, then Wm,p(�d) ↪→ L∞(�d).

The same results hold if the functions are periodic or defined on a smooth
enough domain Ω ⊂ �d (see Adams [4]).

In the sequel we will need also this simple interpolation inequality that is
a particular case of much more general results on interpolation in Sobolev
spaces (see Bergh and Löfström [25]).

Proposition 7.33. Let u ∈ Hr(�d) ∩ Hs(�d). Then u belongs to Ht(�d),
for each r ≤ t ≤ s, and the following estimate holds:

‖u‖Ht ≤ C‖u‖θ
Hr‖u‖1−θ

Hr , θ being defined by t = θr + (1 − θ)s,

for a constant C independent of u.

Then, using the Sobolev embedding H3/2+ε ↪→ L∞, and with the above result
of interpolation of Hs-spaces, we obtain

‖∇wm‖L∞ ≤ ‖wm‖H5/2+ε ≤ ‖wm‖ 1
2−ε

H2 ‖wm‖ 1
2+ε

H3 , for each ε ∈ (0, 1/2).

By recalling the Young inequality, we have

‖∇̃3wm∇̃wm‖‖∇wm‖ ≤ C‖wm‖ 1
2+ε

H3 ‖wm‖ 3
2−ε

H2 ≤ η

2
‖wm‖2

H3 +
C2

2η
‖wm‖2

H2 .

We also have∣∣∣(L−1(∆̃wm∆̃wm),∇A2wm

)∣∣∣ = ‖L−1(∆̃wm∆̃wm)‖H4‖∇A2wm‖H−4

and

‖L−1(∆̃wm∆̃wm)‖H4‖∇A2wm‖H−4 ≤ C ‖∇2wm‖2
L4‖∇wm‖

≤ C‖∇3wm‖3/2‖∇2wm‖3/2.
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They finally imply∣∣∣(L−1(∆̃wm∆̃wm),∇A2wm

)∣∣∣ ≤ η

2
‖wm‖2

H3 +
C433

25η2
‖wm‖6

H2 .

The last term in (7.58) is estimated in the obvious way:∣∣(f , A2wm

)∣∣ =
∣∣∣(A1/2f , A3/2wm

)∣∣∣ ≤ η

2
‖A3/2wm‖2 +

1
2η

‖A1/2f‖2,

where we used the identity

(Au,v) = (Aεu, A1−εv),

which holds for u,v ∈ D(A). We finally obtain

1
2

d

dt
‖Awm‖2 1

2Re
‖A3/2wm‖2 ≤ C(Re, δ)(‖Awm‖4 + ‖Awm‖6 + ‖A1/2f‖2).

The last estimate implies (by using classical existence results for ordinary
differential equations) that there exists a unique solution wm to (7.58), in
some time interval [0, T ∗), for a strictly positive T ∗, and that

wm ∈ L∞(0, T ∗; H2) ∩ L2(0, T ∗; H3). (7.59)

Let us now turn to an estimate for the time derivative. Multiplying (7.58) by
∂tAwm and integrating by parts, we obtain

‖∂t∇wm‖2 +
1

2 Re

d

dt
|Awm‖2 ≤ |((wm · ∇)wm, A∂twm)|

+
∣∣∣∣(L−1

[
δ2

12
∇wm∇wm

− δ4

1152
(∇̃3wm∇̃wm + ∆̃wm∆̃wm + ∇̃wm∇̃3wm)

]
,∇A∂twm

)∣∣∣∣ .
(7.60)

To estimate the right-hand side we proceed as follows: We start with the term∣∣∣(L−1(∇̃3wm∇̃wm),∇A∂twm

)∣∣∣
≤ ‖L−1(∇̃3wm∇̃wm)‖W 3,6/5 ‖∇A∂twm‖W−3,6 .

By recalling the Sobolev embedding H1 ↪→ L6, we can easily bound the second
term by

‖∂twm‖L6 ≤ C ‖∂t∇wm‖ ,
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while the first one needs the following treatment:

‖L−1(∇̃3wm∇̃wm)‖W 3,6/5 ≤ C ‖∇3wm∇wm‖W−1,6/5 .

This is handled as follows:

‖∇3wm∇wm‖W−1,6/5 = sup
ψ �=0

〈∇3wm∇wm, ψ〉
‖ψ‖W 1,6

.

An integration by parts, together with the periodicity of the functions, implies
(we replace the duality with the integral, since the functions wm are smooth)∣∣∣∣∫

Q

∇3wm∇wmψ dx
∣∣∣∣ =

∣∣∣∣∫
Q

∇2wm∇2wmψ dx +
∫

Q

∇2wm∇wm∇ψ dx
∣∣∣∣

with the Hölder inequality

≤ ‖∇2wm∇2wm‖L6/5‖ψ‖L6 + ‖∇2wm∇wm‖‖∇ψ‖L6

≤ (‖∇2wm∇2wm‖L6/5 + ‖∇2wm∇wm‖L6/5)‖ψ‖W 1,6 .

The terms involving wm may be bounded as follows:

‖∇2wm∇2wm‖L6/5 ≤ ‖∇2wm‖3/2‖∇3wm‖1/2 + ‖∇2wm‖L6/5‖∇wm‖L∞

≤ ‖∇2wm‖3/2‖∇3wm‖1/2 + ‖∇2wm‖‖∇3wm‖.
(7.61)

In the derivation of (7.61) we used the embedding H3 ↪→ L∞ and the inter-
polation inequality

‖f‖L12/5 ≤ ‖f‖3/4
L2 ‖f‖1/4

L6 ≤ C‖f‖3/4‖∇f‖1/4,

that derives from the convex-interpolation inequality and the Sobolev em-
bedding. The same method shows how to estimate the last term appearing
in (7.60). The term∣∣∣(L−1(∆̃wm∆̃wm),∇A∂twm

)∣∣∣ =
∣∣∣∇(

L−1(∆̃wm∆̃wm), A∂twm

)∣∣∣
may be bounded as follows:

‖∇(L−1(∆̃wm∆̃wm)‖W 2,6/5 ‖∇A∂twm‖W−2,6 ,

which in turn is bounded by

C‖∇2wm‖2
L12/5 ‖∂twm‖L6 ≤ C‖∇3wm‖1/2‖∇2wm‖3/2 ‖∂t∇wm‖ .

The term involving the lower derivative can be handled similarly.
Using the Young inequality, we obtain

‖∂t∇wm‖2 +
1

Re

d

dt
‖Awm‖2 ≤ c(‖Awm‖2 + ‖Awm‖3)‖A3/2wm‖2. (7.62)
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By recalling the bound previously obtained in (7.59), we can integrate (7.62)
with respect to time over [0, T ∗) to obtain∫ T∗

0

‖∂t∇wm‖2 ≤ C,

which gives the desired bound on the time derivative.
With the bounds we can extract from {wm} a subsequence (relabeled as

{wm}) such that⎧⎪⎨⎪⎩
wm

∗
⇀ w in L∞(0, T ∗; H2)

wm ⇀ w in L2(0, T ∗; H3)
wm → w in L2(0, T ∗; H2) and a.e. in (0, T )× Q.

The argument is based on the classical Aubin–Lions lemma, and the reasoning
follows the guidelines of the previous section.

Regarding the term with ∇̃3wm∇̃wm, we observe that since ∂t∇wm con-
verges weakly in L2(0, T ∗; H1), then wm converges weakly in L∞(0, T ∗; H1).
Consequently, this implies that ∀φ ∈ C∞

per(Q)((
�− δ2

24
∆ +

δ4

1152
∆2

)−1 [
∇̃3wm∇̃wm

]
,∇φ

)

=

(
∇̃3wm∇̃wm,

(
�− δ2

24
∆ +

δ4

1152
∆2

)−1

∇φ

)

→
(
∇̃3w∇̃w,

(
�− δ2

24
∆ +

δ4

1152
∆2

)−1

∇φ

)

in L2(0, T ∗). The convergence of the terms involving ∆̃wm∆̃wm can be
obtained by observing that the classical results of interpolation show that
∆̃wm ∈ L∞(0, T ∗; L2)∩L2(0, T ∗; H1). This implies, by the Hölder inequality,
that ∆̃wm ∈ L4(0, T ∗; L3). Thus, ∆̃wm∆̃wm is bounded in L2(0, T ∗; L3/2),
and

∆̃wm∆̃wm ⇀ ∆̃w∆̃w in L2(0, T ∗; L3/2).

This implies that, ∀φ ∈ C∞
per(Q), the following convergence takes place in

L2(0, T ∗) : ((
�− δ2

24
∆ +

δ4

1152
∆2

)−1 [
∆̃wm∆̃wm

]
,∇φ

)

=

(
∆̃wm∆̃wm,

(
�− δ2

24
∆ +

δ4

1152
∆2

)−1

∇φ

)

→
(

∆̃w∆̃w,

(
�− δ2

24
∆ +

δ4

1152
∆2

)−1

∇φ

)
.
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The convergence of the other nonlinear terms is rather standard and can easily
be obtained with the same tools as Sect. 7.2.1. Full details can be found in [33].
��

7.3.3 Numerical Validation and Testing of the HOSFS Model

Single- and Two-mode Analysis

We follow the approach used by Geurts [130] and Katopodes, Street, and
Ferziger [183, 182, 184], and compare the HOSFS model with (1) the Rational
LES model, (2) the Gradient LES model, and (3) the higher-order gradient
model (7.63) for the particular choices u(x) = eiKx and u(x) = eiK1x +eiK2x,
where K2 = C K1 and C = 2, 3, 4, 5, and 10.

We emphasize that while these tests do not automatically imply the success
of an LES model in actual turbulent flow simulations, they give some insight
into the way the LES models reconstruct the SFS stress tensor τ (see also
Remark 7.34).

To this end, we first present an equivalent of the HOSFS model for the
gradient model: the higher-order gradient model. We stress, however, that we
consider this last model only to illustrate numerically our theoretical consid-
erations. The higher-order gradient model (HOGR) [183, 182, 184] (that is
a model obtained in the same way – see Sect. 7.1.1 – as the Gradient model,
but with a Taylor series expansion up to O(δ6) of ĝδ(k)) reads

τ =
δ4

576
(∆u∆uT + u∆2uT ) − δ2

12
u∆uT +

δ2

24
∆(uuT ) − δ4

288
∆(u∆uT )

+
δ4

1152
∆2(uuT ). (7.63)

This simple scalar and one-dimensional example will give us some insight into
the behavior of the SFS stress tensor for the four models considered. We shall
compare these results with the exact SFS stress tensor.

Case I. u(x) = eiKx.

This case gives us some insight into the stress tensor based on interactions at
the same wavenumber. Specifically, we focus on the oscillatory part of eiKx.
First, after a simple calculation, we get

u = e−
K2δ2

24 u.

The exact stress tensor is

τ = u u − uu =
(
e−4 K2δ2

24 − e−2 K2δ2
24

)
e2iKx.

We get the oscillatory part (that is, the term multiplying e2iKx) of the stress
tensors corresponding to the gradient model,
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− δ2K2

12
e−2 δ2K2

24 ,

the Rational LES model ,

− δ2K2

12
e−2 δ2K2

24

1 + δ2K2

6

,

the HOGR model (7.63),(
− δ2K2

12
− δ4K4

96

)
e−2 δ2K2

24 ,

and the HOSFS model,(
− δ2K2

12
− δ4K4

96

)
e−2 δ2K2

24

1 + δ2K2

6 + δ4K4

72

.

The corresponding results are presented in Fig. 7.1. Clearly, the best results
correspond to the HOSFS model: its oscillating part in the SFS stress tensor τ
is the closest to the exact value. Notice also that the Gradient LES model and
the HOGR model (7.63) overpredict the correct results, and this is apparent
for the higher wave numbers. This is due to the inaccurate approximation to
the Fourier transform of the Gaussian filter away from the origin.

Case II. u(x) = eiK1x + eiK2x, with K2 = CK1, C = 2, 3, 4, 5, and 10.

This case gives insight into the interaction between large and small scales in
the SFS stress tensor. Since we looked at the interaction between the same
wavenumbers in Case I, we focus now on the interaction between large (that
is, K2) and small (that is, K1) wavenumbers. Specifically, we focus on the
oscillatory part of ei(K1+K2)x.
For the exact SFS stress tensor τ = u u − u u, this oscillatory part is

2 e−(1+c)2
K2

1δ2

24 − 2 e−(1+c2)
K2

1δ2

24 .

We get the oscillatory part of ei(K1+K2)x in the stress tensors corresponding
to the Gradient LES model,

−2 c
δ2K2

1

12
e−(1+c2)

δ2K2
1

24 ,

the Rational LES model,

−2 c
δ2K2

1

12
e−(1+c2)

δ2K2
1

24

1 + (1 + c)2 δ2K2
1

24

,
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Fig. 7.1. Oscillatory part of the SFS stress tensor τ for Case I (one wave): exact
stress (continuous line), the Gradient LES model (dash-dotted line); the higher-order
gradient model (7.63) (dashed line); the Rational LES model (thin dotted line); the
HOSFS model (thick dotted line)

the HOGR model (7.63),[
(−2 (1 + c)2 + 2 (1 + c2))

(
−δ2K2

1

24

)
+ (2 (1 + c)4 + 2 (1 + c4) − 4 (1 + c2) (1 + c)2 + 4 c2)

(
−δ4K4

1

1152

)]
e−(1+c2)

δ2K2
1

24 ,

and the HOSFS model,(
−2 c

δ2K2
1

12
− 2 (2 (c + c3) + 2 c2)

δ4K4
1

576

)
e−(1+c2)

δ2K2
1

24

1 + (1 + c)2 δ2K2
1

24 + (1 + c)4 δ4K4
1

1152

.
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Fig. 7.2. Oscillatory part of the SFS stress tensor τ for Case II (two wave),
C = 2: exact stress (continuous line), the Gradient LES model (dash-dotted line);
the higher-order gradient model (7.63) (dashed line); the Rational LES model (thin
dotted line); the HOSFS model (thick dotted line)

The corresponding results are presented in Figs. 7.2 and 7.3. The best results
seem to correspond to the HOSFS model: its SFS stress tensor is the closest
to the exact SFS stress tensor. The HOGR model (7.63) performs better for
low wavenumbers, but it underpredicts drastically the correct stress tensor
for large wavenumbers. This behavior is alleviated for larger values for the
constant C, when the HOGR model (7.63) performs similarly to the HOSFS
model. The pure Gradient LES model performs as in the previous case: it
overpredicts the correct value of the oscillating part of the stress tensor. Again,
this is due to the inaccurate approximation to the Fourier transform of the
Gaussian filter away from the origin.

Remark 7.34. As mentioned at the beginning of the section, this single- and
two-mode analysis sheds some light on the ability of the LES models to re-
construct the SFS stress tensor τ .

Of course, this is just a preliminary step in assessing the HOSFS model.
We need to use a priori and, especially, a posteriori tests in actual turbulent
flow simulations in order to validate the HOSFS model.

Based on the insight gained from actual simulations, we could improve
the performance of the HOSFS models. One such possible improvement could
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Fig. 7.3. Oscillatory part of the SFS stress tensor τ for Case II (two waves), C =
3, 4, 5, 10 (left-right, top-bottom): exact stress (continuous line), the Gradient LES
model (dash-dotted line); the higher-order gradient model (7.63) (dashed line); the
Rational LES model (thin dotted line); the HOSFS model (thick dotted line)

come from a mixed model obtained by coupling the HOSFS model with an
eddy viscosity model accounting for the loss of information in the discretiza-
tion process, as advocated by Carati et al. [55] and used by Winckelmans et
al. [316]. Then we could compare the HOSFS model with other LES mod-
els, such as the dynamic eddy viscosity model in Germano et al. [129] or the
variational multiscale method of Hughes et al. [160, 162].

On Numerical Implementation

Because of the higher-order derivatives appearing in this model, higher-order
methods (for example, spectral methods or finite difference methods) seem
the most appropriate approaches for the numerical realization of the HOSFS
model (7.57). Of course, once the behavior of the higher-order terms is well
understood, one may be able to extend this model to finite element methods.

Also, since the inverse operator in (7.57) is just an approximation to convo-
lution with the Gaussian filter gδ, the most natural numerical approach toward
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its implementation would probably be through a local operator. Specifically,
we need to compute the convolution only locally (just across a few elements
in the neighborhood of our grid point) because of the rapidly decaying behav-
ior of the Gaussian filter. This approach could be implemented in an efficient
manner. For example, if the finite element method is used, one would need to
store at the beginning of the computation the convolution of the finite element
basis functions with the spatial filter gδ at the Gauss points in each element.
By using this information, one could then update the SFS stress tensor at
each time-step accordingly.

The HOSFS model is very similar in spirit to the approximate deconvolu-
tion model of Stolz and Adams [285] described in Chap. 8. Thus, the numerical
approach adopted in the implementation of this approximate deconvolution
model could guide us in an efficient numerical implementation of the HOSFS
model.

7.4 Conclusions

In this chapter we introduced the concept of SFS-subfilter-scale modeling in
which the goal is to approximate (some of) the information lost in the filtering
process (i.e. the convolution with the spatial filter gδ). This approach is also
known as approximate deconvolution. In this chapter we considered a particu-
lar class of approximate deconvolution models – those based on wavenumber
asymptotics. Three LES models in this class were presented: the Gradient LES
model of Leonard [212] and Clark, Ferziger, and Reynolds [65], the Rational
LES model of Galdi and Layton [122], and the Higher-order Subfilter-scale
model of Berselli and Iliescu [33]. For all the models a careful derivation and
a thorough mathematical analysis was presented. The corresponding numeri-
cal results will be presented in Chap. 12.

We want to stress that there is a fundamental difference between the SFS
and SGS philosophies: the SFS approach considers the LES modeling process
as a sequence of two steps:

Step 1: Approximate the information lost in the spatial filtering process
to approximate τ = uuT − uuT by terms involving u only (the closure
problem).
Step 2: Discretize the resulting SFS model.

Thus, in the SFS modeling approach, the modeling is done sequentially: first
at a continuous level (Step 1) and then at a discrete level (Step 2).

In contrast, in the SGS modeling, both the continuum and the discrete
approximations in Step 1 and Step 2 are treated unitarily, as a unique source
of error. Thus, the modeling is done in one step. A classic example in this
class are the pure eddy viscosity models presented in detail in Part II. In
these models, it is assumed that the information below the filter-scale δ is
irreversibly lost (and thus there is no subfilter-scale information). It is also
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assumed that the only means of (subgrid-scale) modeling is by using physical
insight.

One possible inconsistency of the SGS modeling approach is that although
one does not make a distinction between the grid-scale h and the filter-scale δ
in the modeling process, in actual implementations δ is a multiple of h. For
example, δ = 2 h is a very popular choice in practical LES computations.
Moreover, the numerical simulations are very sensitive to the choice of the
proportionality constant.

The SFS modeling approach, on the other hand, offers the opportunity of
understanding the relationship between the filter-scale δ and the grid-scale h,
with the potential of deriving appropriate scalings. This could eventually yield
robust and universal LES models able to work in different settings without
the tuning necessary for present LES models.

Connecting the two steps in the SFS modeling process (the continuum
and the discrete approximation) is a daunting task closely related to the nu-
merical analysis of this process. Only the first steps have been made in this
direction [168, 177, 164, 99, 100, 102, 153]. Some of these steps have been
presented in the exquisite monograph of John [175]. These are the first steps
along a tenuous road whose finish line could, however, offer the robustness
and level of generality LES is currently needing.

We end by briefly listing some of the contributions to SFS modeling
that, due to space limitations, we had to leave out: the inverse modeling
of Geurts [130], the velocity estimation model of Domaradzki and collabora-
tors [93, 92], the approximate deconvolution model of Stolz and Adams [285]
(a detailed presentation is given in Chap. 8), and the work of Carati and
collaborators [55, 315], Vreman and collaborators [308, 307, 310, 194, 309],
Winckelmans and collaborators [316, 315], and Borue and Orszag [41], and
Katopodes, Street, and Ferziger [183, 182, 184].

A particular class of SFS models are the scale similarity models of Bar-
dina, Ferziger, and Reynolds [13, 14]. We give a detailed presentation of these
models in Chap. 8.
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Scale Similarity Models

8.1 Introduction

Scale similarity models were introduced in 1980 by Bardina in his PhD thesis
and in a series of papers with Ferziger and Reynolds [13, 14]. The principle
behind them can be expressed in various ways. One description is that

the energy transfer from all unresolved scales to resolved scales is dom-
inated by the transfer from the first, largest unresolved scale to the
smallest resolved scale. This transfer across scales is similar to the
energy transfer from the smallest resolved scale to the next smallest
resolved scale.

One direct realization of this idea is the Bardina model (given by (8.1) below).
At another level, scale similarity is an assumption that

unresolved quantities (φ) can be effectively approximated by extrapo-

lating their values from their resolved scales (φ, φ, φ, etc.)

They have been tantalizingly close to seeming a universal and accurate model
in LES. However, stability problems have also been reported for them, spurring
the development of successively more complicated or refined models. In the
sequel we shall introduce the most widely known scale similarity models, to-
gether with some recent improvements. The reader will find in this chapter
the fundamental ideas and will have a chance of understanding the potential
and the problems related to designing scale similarity models.

8.1.1 The Bardina Model

To shorten the notation, in this chapter we denote uuT simply by uu. We
now briefly derive the Bardina model, the first one designed by using scale
similarity ideas. In [13] the authors proposed to model terms in the triple
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decomposition (Cross, Reynolds, and Leonard term; see p. 72) by using a sec-
ond application of the filter, together with a zero-order approximation, i.e.
φ ψ = φψ. These lead to

R ≈ (u − u)(u − u)

C ≈ (u − u)u + u (u − u).

Adding then L = uu−uu, the third, and last term in the triple decomposition
τ = R + C + L, we get the Bardina model

τ (u,u) = uu− uu ≈ (uu− uu) =: SBardina(u,u). (8.1)

Thus, the model (8.1) estimates the effects of the unresolved scales by a simple
extrapolation from the smallest resolved scales. A priori tests, i.e. tests in
which a turbulent velocity field u from a DNS is explicitly filtered and the
model’s consistency is estimated via

‖τ (u,u) − SBardina(u,u)‖ (8.2)

have been consistently positive and, in fact, have been consistently better than
analytic studies of the accuracy of the model in the irrotational flow region
(specifically, for a smooth u). For smooth u, it is easy to show that the model’s
consistency error is O(δ2). Since τ (u,u) is itself O(δ2) for smooth u, this only
shows that the relative error is O(1) for the Bardina model! Again, it must
be emphasized that in a priori tests the Bardina model always appears quite
accurate.

Proposition 8.1. Suppose the averaging operator is convolution with a Gaus-
sian. Consider the modeling consistency (8.2) of the Bardina model (8.1).
For the Cauchy problem or the periodic problem, and for smooth functions
u ∈ H2(Ω)

‖τ (u,u) − SBardina(u,u)‖ ≤ Cδ2‖u‖L∞‖u‖H2 .

Proof. Adding and subtracting terms and using the triangle inequality gives

‖(uu− uu) − (uu− uu)‖ ≤ ‖u (u− u)‖ + ‖(u− u)u‖ + ‖u(u − u)‖
+ ‖(u− u)u‖.

Simple inequalities (like ‖f g‖ ≤ ‖f‖L∞‖g‖) and the basic properties of aver-
aging (‖u − u‖ ≤ c δ2‖u‖H2), give

‖τ (u,u) − SBardina(u,u)‖ ≤ 4 ‖u‖L∞C δ2‖u‖H2 , (8.3)

which completes the proof. ��
The Bardina closure model (8.1) gives the following system for the approxima-
tion w to the average velocity u and q to the average pressure p in Ω× (0, T ):
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wt + ∇ · (w w) − 1
Re

∆w + ∇ · (ww − ww) + ∇q = f , (8.4)

∇ · w = 0, (8.5)

which is supplemented by initial and boundary conditions. In this chapter
we follow our usual procedure of studying periodic boundary conditions (2.3)
(with the zero mean condition) to isolate the closure problem.

Since the Bardina model (8.4) has been observed to have very small con-
sistency error in various a priori tests, its direct usefulness hinges on the
analytic criterion of stability. Furthermore, since many a posteriori tests (i.e.
tests using the Bardina model in the actual numerical simulations, as op-
posed to the a priori tests where only DNS data is needed) have raised some
questions about the stability of the Bardina model, it is important to try to
understand the energy balance of the model (8.4). To that end, we will un-
couple the model (8.4) from its boundary conditions by the usual approach of
studying (8.4) subject to periodic boundary conditions (2.3). In exploring the
energy balance of the model, the next well-known lemma will be essential and
we shall make use of the space V of divergence-free functions defined in (7.22).

Lemma 8.2. Let u,v,w ∈ V. Then,

(∇ · (uv),w) = −(uv,∇w) = −(u · ∇w,v), (8.6)
(u · ∇v,w) = −(u · ∇w,v), (8.7)

and thus,
(u · ∇v,v) = 0. (8.8)

Furthermore, in three dimensions (improvable in two dimensions) there is
a constant C = C(Ω) such that

|(u · ∇v,w)| ≤ C ‖∇u‖ ‖∇v‖
√
‖w‖ ‖∇w‖, (8.9)

and
|(u · ∇v,w)| ≤ C

√
‖u‖ ‖∇u‖ ‖∇v‖ ‖∇w‖. (8.10)

Proof. Essentially, we used the above equality and estimates in Chap. 7, but
we collect them for simplicity and also because we shall use them several
times in the present chapter. The proof of (8.6)–(8.8) follows by applying
the divergence theorem. The bounds (8.9) and (8.10) follow from Holder’s
inequality, the Sobolev inequality and the interpolation inequality. ��
Let us use the lemma to explore the kinetic energy balance of the model (8.4).
Assuming (w, q) to be a smooth enough solution of the Bardina model (for
example, a strong solution), we can multiply (8.4) by w and integrate over
the domain Ω. This gives∫

Ω

wt w dx +
∫

Ω

∇ · (ww)w dx − 1
Re

∫
Ω

∆ww dx

+
∫

Ω

∇q w dx +
∫

Ω

∇ · (ww − ww)w dx =
∫

Ω

f w dx.

(8.11)
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Numbering the terms above in (8.11) I, II, . . ., VI, we treat most of them
exactly as in the case of deriving the energy balance of the Navier–Stokes
equations in Chap. 2. Terms II and IV vanish, term III is the energy dissipation
rate, and term I is the time derivative of the kinetic energy:

1
2

d

dt
‖w‖2 +

1
Re

‖∇w‖2 =
∫

Ω

f w dx −
∫

Ω

∇ · (ww − ww) w dx.

We can apply the estimates of the previous lemma to the last term on the
right-hand side as follows: first, note that for a constant filter radius δ, in the
absence of boundaries, and for periodic boundary conditions, differentiation
and filtering commute and filtering is a self-adjoint operation, meaning

(u,v) = (u,v).

In particular, the above observation can be used to prove the following equal-
ities:∫

Ω

∇ · (w w)w dx = (∇ · (ww),w) = (∇ · (w w),w) = (∇ · (ww),w)

= (by Lemma 8.2) = −(w · ∇w,w)
= (w · ∇w,w − w),

since the extra term (w · ∇w,w) is zero. Similarly,∫
Ω

∇ · (w w) ·w dx = −(w · ∇w,w) = (w · ∇w,w).

Thus, by using (8.8)∫
Ω

∇ · (w w − ww) · w dx = (w · w,w) − (w · ∇w,w)

= (w · ∇w,w − w) − (w · ∇w, (w − w)).

We summarize them in the following lemma.

Lemma 8.3. Provided differentiation and filtering commute and filtering is
self-adjoint, then the following identity holds:∫

Ω

∇ · (w w − w w) ·w dx = (w · ∇w,w − w) + (w · ∇w,w − w).

Furthermore, there is a constant C = C(Ω) such that∣∣∣∣∫
Ω

∇ · (ww − ww) · w dx
∣∣∣∣ ≤ C ‖∇w‖2 ‖w − w‖1/2 ‖∇(w − w)‖1/2,

and ∣∣∣∣∫
Ω

∇ · (w w − ww) ·w dx
∣∣∣∣ ≤ C(Ω) δ1/2‖∇w‖3

≤ C(Ω) δ1/4‖∇w‖11/4‖w‖1/4.
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Proof. The first identity is just a summary of the manipulations leading up
to the lemma. The second one follows by applying Lemma 8.2 and

‖w − w‖1/2 ≤ C δ1/2 ‖∇w‖1/2.

For the third estimate, we note that ‖w − w‖ ≤ C δ ‖∇w‖ and ‖w − w‖ ≤
C ‖w‖ together imply a group of estimates that interpolate between these two
via, for 0 ≤ θ ≤ 1,

‖w − w‖ = ‖w − w‖θ ‖w − w‖1−θ ≤ C δ1−θ‖∇w‖1−θ‖w‖θ.

In particular, picking θ = 1/2 and taking square roots gives ‖w − w‖1/2 ≤
C δ1/4 ‖w‖1/4 ‖∇w‖1/4. The third estimate follows by using this in the second
one. ��
The two kinetic energy inequalities that follow from Lemma 8.3 are then

d

dt
‖w‖2 +

1
Re

‖∇w‖2 ≤ 1
Re

‖f‖2 + C δ1/2‖∇w‖3,

d

dt
‖w‖2 +

1
Re

‖∇w‖2 ≤ 1
Re

‖f‖2 + C δ1/4‖w‖1/4‖∇w‖11/4.

(8.12)

While several steps in the above derivation are improvable, the basic difficulty
remains: a cubic term on the right-hand side cannot be bounded for large
data by the quadratic terms on the left-hand side of either energy inequality.
Indeed, this energy inequality predicts stability provided

1
Re

‖∇w‖2 ≥ C δ1/2 ‖∇w‖3,

that is, while

‖∇w‖ ≤ C

δ1/2Re
.

Since turbulence is essentially about high Reynolds numbers and large lo-
cal changes in velocities (that is, large gradients) these conditions cannot be
considered to cover interesting cases of practical turbulent flows, unless δ is
small enough that δ = O(Re−1/2), i.e. the problem begins to be fully re-
solved.

Remark 8.4. The Bardina model can be interpreted as an approximate de-
convolution method. In fact, if the filter is given by using a second-order
differential approximation, then the Bardina model is equivalent to the Gra-
dient model of Sect. 7.1. See Chap. 6.4.1 in [267] for further details. This fact
is reflected in the cubic term involving the gradient in the energy estimate,
cfr. with estimate (7.9).
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8.2 Other Scale Similarity Models

The most straightforward attempt at an energy estimate for the Bardina
model just fails. We could try multiplication of the equation by a linear com-
bination of w and w or using other inner products. However, the failure
of direct assault plus the stability problems reported in simulations suggest
that a delicate difficulty might be inherent in the model rather than a failure
of analysis. While there is no rigorous mathematical proof that the kinetic
energy of the Bardina model can behave catastrophically, this has been suf-
ficient evidence to spur many attempts (see the presentation in Sagaut [267])
at improvements of scale similarity models. It is useful to review a few before
proceeding.

8.2.1 Germano Dynamic Model

The most common realization of the dynamic model uses a locally weighted
combination of the Smagorinsky model, which is stable but inaccurate, and
Bardina’s model, which is accurate but with stability problems. In effect, in
Germano et al. [129] and Lilly [220], the Smagorinsky “constant” CS is picked
to make, in a least squares sense, the Smagorinsky model of τ (u,u) as close
as possible to the Bardina scale similarity model of τ (u,u).

8.2.2 The Filtered Bardina Model

The filtered Bardina model [157] is given by

τ (u,u) ≈ uu− uu.

Testing of the model has been performed in [14]. It is still an open problem
to understand the energy balance of this model, especially the influence of
the extra filtering step, and then develop a mathematical foundation for the
filtered Bardina model.

The Bardina model has also been generalized by using two filters (conse-
quently two different cut-off scales) by Liu, Meneveau, and Katz [223], ob-
taining

τ (u,u) ≈ C1 ũ u − ũ ũ.

The cut-off length of the filter, denoted by tilde, is larger than that of the
filter denoted by bar. The constant C1 is chosen in order to ensure that the
average kinetic energy is equal to the exact one. A dynamic version of this
model has also been proposed in [223]. In the latter C1 is not a constant, but
it is determined dynamically with the aid of a third filter.
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8.2.3 The Mixed-scale Similarity Model

In mixed models an extra p-Laplacian is added to enhance stability of the
overall model. For example, for the mixed-Bardina model [14] we have

τ (u,u) ≈ (uu − uu) − (Cαδ)α|∇su| ∇su. (8.13)

The added Smagorinsky term does provide stabilization. Mathematically, it is
also appealing because it gives a cubic (in ∇sw) term in an energy inequality.
The “bad” nonlinear interactions in the Bardina model lead to cubic terms
as well, and bounding cubic terms by cubic terms has hope. Experimentally,
it is also a sensible approach. Difficulties with the kinetic energy evolution of
the Bardina model appear to be delicate, and the Smagorinsky term in (8.13)
is stabilizing. Thus, it is possible that, even in the worst case, the added term
causes kinetic energy catastrophes to occur after a much longer time interval
– perhaps long enough to be uninteresting. Admittedly, this is all speculation
(and an interesting open question). If we seek sufficient conditions on Cα and
α that ensure the mixed model is stable over 0 ≤ t < ∞, then mathematical
analysis can contribute some (pessimistic) conditions.

The analysis leading up to (8.12) can easily be adapted to the mixed model,
provided α = 1/2 and the constant Cα is large enough – certainly pessimistic
conditions!

Proposition 8.5. Let α = 1/2 in (8.13) and suppose the constant Cα is large
enough. Then, strong solutions of the mixed Bardina model (8.13) are stable
and satisfy

1
2
‖w(T )‖2 +

∫ T

0

1
Re

‖∇w‖2 + (C − Cα) δ1/2 ‖∇sw‖3
L3 dt

=
1
2
‖u0‖2 +

∫ T

0

∫
Ω

f w dx dt.

Using this energy inequality, many interesting properties of the mixed model
can be developed. Unfortunately, the case α = 1/2 is far from the typical
choice of α = 2. An open problem is to sharpen the analysis of the mixed
Bardina model to treat the case α = 2 and large data.

8.3 Recent Ideas in Scale Similarity Models

One direction of research in scale similarity models has been to begin with the
Bardina model and to develop from it successively extended or refined models
with incrementally better stability properties. Each additional modeling step
typically has succeeded in increasing stability but the same modeling steps
also typically decrease accuracy.

There have been at least three interesting and relatively new ideas in scale
similarity models that, so far, seem like good paths to derive models that are
both accurate and stable:
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1. explicit skew-symmetrization of the nonlinear Bardina term
∫

Ω
(ww −

ww) : ∇sw dx in the energy inequality and other, related skew-symmetric
models;

2. a low-order accurate scale similarity model arising by dropping the cross
and Reynolds terms;

3. models based on higher-order extrapolations from the resolved to the un-
resolved scales, such as the Stolz–Adams deconvolution models [285, 289,
290].

Skew-symmetrization

The idea of explicit skew-symmetrization is to mimic in the model the fun-
damental role the skew-symmetry of the nonlinear interaction terms plays in
the mathematics of the NSE. Although there are different ways to develop the
model, the quickest is as follows. If we define the new trilinear form

B(u,v,w) :=
∫

Ω

(uv − u v) : ∇sw dx,

then its skew-symmetric part is

Bskew(u,v,w) :=
1
2

B(u,v,w) − 1
2

B(u,w,v).

It is easy to check that B(·, ·, ·) �= Bskew(·, ·, ·), so replacing B(·, ·, ·) by
Bskew(·, ·, ·) commits a possible serious modeling error that needs to be
checked. One skew-symmetrized scale similarity model arises by replacing
B(·, ·, ·) by Bskew(·, ·, ·) in the variational formulation of the Bardina model
and then working backwards to find the LES model that gives this new vari-
ational formulation. The LES model that results (and which we shall derive
next) is

uu − uu ≈ 1
2

(
uu− uu + uu− uu

)
. (8.14)

Unfortunately, the modeling question in (8.14) is not that simple: stability is
necessary, but so is accuracy and intelligibility.

Let us develop the mathematical properties linked to the model (8.14)
that arise from one-step, explicit skew symmetrization of the Bardina model.
Calling v,w, and φ filtered quantities, the model is associated with the tensor

τ (v,w) := vw − vw.

(Specifically, it is given by uu − uu ≈ τ (uu).) The variational formulation
of the associated Bardina term is

B(v,w, φ) :=
∫

Ω

∇ · (vw − vw) · φ dx.
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The skew-symmetric part of B is B∗(v,w, φ) := 1
2 B(v,w, φ) − 1

2 B(v, φ,w)
and is given by

B∗(v,w, φ) :=
1
2

∫
Ω

∇ · (vw − vw) · φ −∇ · (vφ − vφ) · w dx.

Integrating by parts, the last term of the RHS repeatedly shows that for
smooth enough, divergence-free, periodic functions

B∗(v,w, φ) :=
1
2

∫
Ω

∇ · (vw − vw + vw − vw) · φ dx.

For LES modeling, this would correspond to the closure model (8.14) men-
tioned earlier.

While the RHS is recognizable as an approximation of the LHS, it is cer-
tainly an odd one. For example, the LHS tensor is symmetric, while the RHS
tensor, which approximates it, is not. It may well prove that the scale sim-
ilarity model (8.14) is the best/most accurate/ultimate model. However, it
seems like a wrong headed attempt: an ugly model dictated by mathematical
formalism.

On the other hand, the basic premise is sound: find a model which is
as clear and accurate as possible among the many which lead to a skew-
symmetric nonlinear interaction term. We will show a first step in this direc-
tion in Sect. 8.4. We will call the resulting model (for obvious reasons) the
skew-symmetrized-scale-similarity model, or S4 model.

The kinetic energy balance of any skew-symmetric LES model is simple
and clear. Because of the skew-symmetry of the nonlinear term, it follows
exactly as in the Navier–Stokes case.

Lemma 8.6. Let w be a strong solution of the skew-symmetrized scale simi-
larity model (8.14). Then, w satisfies

1
2
‖w(t)‖2 +

∫ t

0

1
Re

‖∇w(t′)‖2 dt′ =
1
2
‖u0‖2 +

∫ t

0

(f ,w) dt′.

Proof. Multiply by w and integrate over Ω. Skew-symmetry of the trilinear
term implies that it vanishes. The remainder follows exactly like the energy
estimate for the Navier–Stokes equations. ��
A related (better) skew-symmetric scale similarity model (the S4 model) was
recently studied in Layton [203, 204]. Briefly, if one seeks a closure model which
preserves structures of the true Reynolds stresses (like symmetry) and which
yields a skew-symmetric nonlinear interaction term, the S4 model (studied in
Sect. 8.4) arises.

The model consists of finding (w, q) satisfying

wt + ∇ · (ww) + ∇ · (w(w − w) + (w − w)w)

−∇ · (νT (δ,w)∇sw) −∇q − 1
Re

∆w − A(δ)w = f in Ω × (0, T ),

∇ ·w = 0 in Ω × (0, T ),
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subject to the initial w(x, 0) = u0(x) and usual normalization conditions,
while νT (δ) and A(δ) are described below. The operator A(δ) takes the general
form

A(δ)w = R∗
[
∇ · νF (R [w])

]
,

where R is a restriction defined using its variational representation:

(A(δ)w,v) = −(νF (δ)∇s(w − w), ∇s(v − v)),

where νF (δ) is the fine-scale fluctuation coefficient. It satisfies minimally the
consistency condition

νF (δ) → 0 as δ → 0.

There are several possibilities for the “turbulent viscosity” coefficient. The
most common ones used in computational practice are νT = νT (δ) → 0
as δ → 0 and the Smagorinsky model [277]. We shall thus specify ei-
ther

νT = νT (δ,w), where νT → 0 as δ → 0, uniformly in w,

or
νT (δ,w) = CSδ2 |∇sw|.

Energy Sponges and Higher Order Models

The second and third new ideas of scale similarity models came about from
a search in the other direction. There was a search for models that were prov-
ably more accurate (to be very precise: of a higher-order consistency error for
smooth solutions) than the already accurate Bardina model. There were three
important breakthroughs. First, Stolz and Adams [285] developed a family of
models of high accuracy that performed well in practical tests. Second, we no-
ticed in [209, 210, 211] that with the right combination of filter plus model, the
simplest possible, zero-order model also satisfied a surprising and very strong
stability condition: the models acted as a sort of “energy sponge”. The third
breakthrough was that Dunca and Epshteyn [98] proved a similar stability
bound for the entire family.

Thus, the door was opened to stable models with high-order accurate con-
sistency error.

The first model is actually simpler than the Bardina model (and, al-
though it does not perform nearly as well in a priori tests, it has the
same order of consistency). We will introduce the stability idea first in
Sect. 8.5 for this model, before considering the more accurate models in
Sect. 8.6.

These models and their stability properties lead to interesting com-
putational and mathematical developments of LES models in new direc-
tions.
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8.4 The S4 = Skew-symmetric Scale Similarity Model

Averaging the NSE with any filter that commutes with differentiation in the
absence of boundaries, gives

ut + ∇ · (uu) −∇p − 1
Re

∆u = f . (8.15)

The nonlinear term uu can be expanded by using the decomposition of u into
means (u) and fluctuations (u′ = u− u)

uu = (u + u′)(u + u′) = uu + uu′ + u′u + u′u′ (8.16)

into the resolved term, cross-terms and turbulent fluctuations. Motivated by
the scale similarity ideas, the S4 model introduced in [203] arises from (8.16)
as follows: first, the turbulent fluctuations in (8.16) are modeled by the Boussi-
nesq hypothesis that they are dissipative in the mean, giving

u′ u′ ≈ νT (δ,u)∇su, (8.17)

where νT (δ,u) is the turbulent viscosity coefficient. Then, the cross-terms
in (8.16) are modeled by scale similarity:

uu′ + u′u = u (u − u) + (u− u)u ≈ u (u − u) + (u− u)u. (8.18)

Finally, the key step which gives a skew-symmetric interaction term is to
model the resolved term. We consider an EV model of the resolved term given
by

uu ≈ uu + dissipative mechanism on O(δ) scales.

Specifically, we write

∇ · (uu) ≈ uu− A(δ)u. (8.19)

The operator A(δ) : H1
0 → H−1 has the following variational representation:

−(A(δ)w,v) = (νF (δ)∇s(w − w), ∇s(v − v)).

Using this, we can obtain a more concrete representation for A(δ). Indeed,
integrating by parts and exploiting self-adjointness of the averaging operator,
gives

−(A(δ)w,v) =
(
−∇ ·

[
νF (δ) ∇s(w − w) − νF (δ)∇s(w − w)

]
,v
)

= (when νF (δ) is independent ofw)

= (−∇ · νF (δ)∇s(w − 2w + w),v).
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Thus, A(δ) can be thought of as representing the operator ∇ · Â(δ)w, where

Â(δ)w ≈ (νF (δ)∇s((w − w) − (w − w))). (8.20)

To complete the model’s specification, insert (8.17), (8.18), (8.19), (8.20)
into (8.16), then into (8.15), and call (w, q) the resulting approximations to
(u, p). This gives

wt +∇ · (w w) −∇q − 1
Re ∆w − Â(δ)w

+∇ · (w (w − w) + (w − w)w − νT∇sw) = f , (8.21)
∇ · w = 0. (8.22)

It will be useful later to rewrite the SFNSE (8.15) in a more convenient form.
Adding and subtracting terms gives

ut + ∇ · (uu) − 1
Re

∆u + ∇ ·
(
u (u − u) + (u − u)u− νT∇sw

)
−∇p −∇ · (T̃ − uu) = f −∇ · (T̃ ),

∇ · u = 0.

The tensor T̃ that approximates uu is given by

T̃ (u,u) =
[
uu− Â(δ)u + u(u− u) + (u − u)u − νT∇su

]
.

Thus, the magnitude of the tensor difference uu− T̃ (u,u) is a measure of the
accuracy of the modeling steps employed, i.e. the model’s consistency error.

We will consider the model (8.21) under periodic boundary conditions for
the usual reason of uncoupling the analysis of the interior closure problem
from the problems associated with walls.

8.4.1 Analysis of the Model

In an exactly analogous way to the NSE, it is easy to derive the weak formu-
lation of the S4-model. Indeed, a weak solution w : [0, T ] → V of the S4-large
eddy model satisfies, ∀v ∈ L2(0, T ; V )∫ t

0

[
(wt,v) − (w w,∇v) + (νF (δ)∇s(w − w), ∇s(v − v))

−(w (w − w) + (w − w)w,∇v) + (νF (δ,w)∇sw,∇sv)

+
1

Re
(∇w,∇v)

]
dt′ =

∫ t

0

(f ,v) dt′,

where H and V denote respectively the subspaces of L2 and H1 of divergence-
free, periodic functions, with zero mean; see p. 159 for further details.
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Let b(u,v,w) denote the (nonstandard) trilinear form

b(u,v,w) := −
∫

Ω

uv∇w +
[
u (v − v) + (u − u)v

]∇w dx. (8.23)

It satisfies the following property.

Lemma 8.7. The trilinear form (8.23) is skew-symmetric:

b(u,v,w) = −b(u,w,v), and thus b(u,v,v) = 0, ∀u,v,w ∈ V.

Proof. This is a simple calculation given in [203]. First, notice that integrating
by parts gives

b(u,v,w) =
∫

Ω

u · ∇w · v + u · ∇w · (v − v) + (u − u) · ∇w · v dx.

We will use repeatedly the fact that (φ · ∇ψ, η) = −(φ · ∇η, ψ) for all
φ, η, ψ ∈ V . Consider Φ = b(u,v,w) + b(u,w,v) which we seek to prove to
vanish. We have

Φ =
∫

Ω

u · ∇w · v + u · ∇wv − u · ∇wv + u · ∇w · v − u · ∇w · v
+ u · ∇v ·w + u · ∇v · w − u · ∇v ·w + u · ∇vw − u · ∇vw dx.

Canceling the obvious terms gives that Φ = 0 and consequently b(·, ·, ·) is
skew-symmetric. ��
Using skew-symmetry of the nonlinear interaction term, it is possible to prove
both existence of weak solutions to the model and an energy inequality for
the model. (The proof is given in detail in M. Kaya [185] and is an adaptation
of the NSE case, so we will omit it here.)

Theorem 8.8. Consider the S4-model (8.21) subject to periodic boundary
conditions. Let νT (δ), νF (δ) be nonnegative constants, and let averaging be
with convolution by a Gaussian or a differential filter. Then, for any u0 ∈ H
and f ∈ L2(0, T ; H) there exists a weak solution to the model (8.21). Any weak
solution satisfies the energy inequality

1
2
‖w(t)‖2 +

∫ t

0

1
Re

‖∇w‖2 + νT ‖∇sw‖2 + νF ‖∇s(w − w)‖2 dt′

≤ 1
2
‖u0‖2 +

∫ t

0

(f (t′),w(t′)) dt′.

Proof. See [185]. ��
The above proof does not take full advantage of the smoothing properties of
the mentioned averaging operators. For a smoothing averaging process (hence
not for the box filter) we expect a better result. Indeed, this existence theorem
can be sharpened. (We leave the next proof as a technical exercise.)
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Theorem 8.9. Under the assumptions of the previous theorem, (i) the weak
solution of the model (8.19) is a unique solution; (ii) if u0 ∈ C∞(Ω)∩H and
f ∈ C∞(Ω × (0, T )), then the unique strong solution is also smooth:

w ∈ C∞(Ω × (0, T ));

(iii) the energy inequality in the previous theorem is, in fact, an equality.

8.4.2 Limit Consistency and Verifiability of the S4 Model

We consider herein the S4 model and the question of limit consistency; sup-
posing νT (δ) and νF (δ) vanish as δ → 0, does w(δ) → uNSE as δ → 0?
Further, does the error in the model satisfy

‖w − uNSE‖ ≤ C ‖T̃ (u,u) − uu‖ + o(1) as δ → 0 ?

We still restrict our attention to the periodic with zero mean boundary con-
ditions. For this model we show the solution w to the model for u converges
to u as the averaging radius δ → 0. We also show that the error ‖u − w‖
is bounded by the modeling error (perhaps better termed “modeling resid-
ual”), evaluated on the true solution u. This last bound suggests one path to
validating the model in either computational or physical experiments.

Let us try to first prove limit consistency by direct assault. The first step
will be to derive an equation for φ = u − w. To this end, rewrite the above
equation for u as∫ t

0

[
(ut,v) + b(u,u,v) + (νF (δ)∇s(u − u),∇s(v − v)) +

1
Re

(∇u,∇v)
]

dt′

=
∫ t

0

[(f ,v) + b(u,u,v) − (uu,∇v) + (νF (δ)∇s(u − u),∇s(v − v))] dt′.

Subtracting the equation satisfied by w from this, gives∫ t

0

(φt,v) + b(u,u,v) − b(w,w,v) + (νF (δ)∇s(φ − φ),∇s(v − v))

+
1

Re
(∇φ,∇v) + (νT∇sw,∇sv) dt′ (8.24)

=
∫ t

0

(f − f ,v) + [b(u,u,v) − (uu,∇v)] + (νF (δ)∇s(w − w),∇s(v − v)) dt′.

Next, we need the following result on the trilinear form b(·, ·, ·).
Lemma 8.10. The trilinear form b(·, ·, ·) is skew-symmetric. It satisfies the
following bound in two or three dimensions:

|b(u,v,w)| ≤ C
[
‖u‖1/2‖∇u‖1/2‖∇w‖ ‖∇v‖

+ ‖u‖1/2‖∇u‖1/2‖∇(v − v)‖ ‖∇w‖
+ ‖v‖1/2‖∇v‖1/2‖∇(u − u)‖ ‖∇w‖

]
, ∀u,v,w ∈ V.
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Proof. Skew-symmetry was proven in [203]. The above bound follows directly
from analogous estimates on the (u · ∇v,w) term, occurring in the usual
Navier–Stokes case (see [121] and calculations in Chap. 7). ��
Next, we show that the solution of the S4 model satisfies

w(x, t) → u(x, t) as δ → 0,

provided u ∈ Lr(0, t; Ls(Ω)) for some r and s satisfying Serrin’s uniqueness
criteria (2.31) for solutions of the NSE.

Theorem 8.11. Let u,w be strong solutions of the NSE and the model (8.21)
respectively, u0 ∈ H, and f ∈ L2(0, T ; H). Let

u ∈ Lr(0, t; Ls(Ω)) for some r, s satisfying
3
s

+
2
r

= 1 and s ∈ [3,∞[.

Then, for 0 < T < ∞

w → u, as δ → 0, in L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)).

Remark 8.12. This “consistency in the limit” result is a fundamental math-
ematical requirement for model consistency, yet (to the authors’ knowledge)
there are few models for which it has been rigorously proven; see Foiaş,
Holm, and Titi [110] and Berselli and Grisanti [31]. The condition that
u ∈ Lr(0, T ; Ls(Ω)) for these r and s is a central open question in three
dimensions. This assumption implies uniqueness of weak solutions in �3 (see
Chap. 2 in this book, or the presentations in Ladyžhenskaya [196], Galdi [121],
and Serrin [275]).

Proof. Setting v = φ in (8.24) gives

1
2
‖φ(t)‖2 +

∫ t

0

1
Re

‖∇φ‖2 + νF (δ)‖∇s(φ − φ)‖2 + (νF∇sw,∇sφ) dt′

=
1
2
‖φ(0)‖2 +

∫ t

0

(f − f , φ) +
[
b(w,w, φ) − b(u,u, φ)

]
(8.25)

+
(
νF (δ)∇s(u− u),∇s(φ − φ)

)
+
[
b(u,u, φ) − (uu,∇φ)

]
dt′.

The first bracketed term on the RHS simplifies to∫ t

0

b(w,w, φ) − b(u,u, φ) dt′ =
∫ t

0

b(φ,u, φ) dt′,

by skew-symmetry of b(·, ·, ·). The other terms on the RHS can be bounded
as follows:
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0

(f − f , φ) dt′ ≤
∫ t

0

ε ‖∇φ‖2 +
C

ε
‖f − f‖2

−1 dt′,∫ t

0

(νF (δ)∇s(u − u),∇s(φ − φ)) dt′ ≤ 1
2

νF (δ)
∫ t

0

‖∇s(u − u)‖2 dt′

+
1
2
νF (δ)

∫ t

0

‖∇s(φ − φ)‖2 dt′.

Inserting these bounds into (8.25) gives

1
2
‖φ(t)‖2 +

∫ t

0

(
1

Re
− ε

)
‖∇φ‖2 +

1
2

νF (δ) ‖∇s(φ − φ)‖2 dt′

≤ C

ε

∫ t

0

‖f − f‖2
−1 dt′ +

1
2

νF (δ)
∫ t

0

‖∇s(u− u)‖2dt′ (8.26)

−
∫ t

0

(νT∇sw,∇sφ) dt′ +
∫ t

0

b(φ,u, φ) dt′ +
∫ t

0

[
b(u,u, φ) − (uu,∇φ)

]
dt′.

Note that∣∣∣∣ ∫ t

0

(νT∇sw,∇sφ) dt′
∣∣∣∣ ≤ ε

∫ t

0

‖∇φ‖2dt′ +
C(ε) δ2

Re

∫ t

0

‖∇w‖2dt′,

where νT (δ) → 0 as δ → 0. Note further that, due to the a priori bounds in
the energy estimates for solutions of the S4 model,

δ

Re

∫ t

0

‖∇w‖2dt′ → 0 as δ → 0.

Thus, (8.26) becomes

1
2
‖φ(t)‖2 +

∫ t

0

(
1

Re
− 2ε

)
‖∇φ‖2 +

1
2

νF (δ) ‖∇s(φ − φ)‖2dt′

≤
∫ t

0

C

ε
‖f − f‖2

−1 +
1
2

νF (δ) ‖∇s(u − u)‖2 + C(ε) νmax(δ) ‖∇w‖2dt′

+
∫ t

0

b(φ,u, φ))dt′ −
∫ t

0

((u − u) · ∇φ,u − u) dt′, (8.27)

where the last term was simplified using the identity∫ t

0

b(u,u, φ) − (uu,∇φ) dt′ = −
∫ t

0

((u − u) · ∇φ,u − u) dt′.

Consider this last term. We wish to show that, modulo a term which can be
dominated by the

∫ t

0 ‖∇φ‖2dt′ term on the LHS, it approaches zero as δ → 0.
To this end, we will use an inequality originally due to Serrin in 1963 [275] in
the form presented in Galdi ([121]; Lemma 4.1, page 30). Specifically, in 3D
(improvable in 2D), for any r and s satisfying 3/s + 2/r = 1, s ∈ [3,∞[,
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0

((u − u) · ∇φ,u− u) dt′
∣∣∣∣ ≤

C

[∫ t

0

‖∇φ‖2 dt′
]1/2 [∫ t

0

‖∇(u − u)‖2 dt′
]3/2s[∫ t

0

‖u− u‖r
Ls‖u− u‖2dt′

]1/r

.

Elementary inequalities then imply that, for any ε > 0,∣∣∣∣ ∫ t

0

((u − u) · ∇φ,u− u)dt′
∣∣∣∣ ≤ ε

∫ t

0

‖∇φ‖2dt′ +

C(ε)
[∫ t

0

‖∇(u − u)‖2dt′
]3/s(

sup
0≤t≤t′

‖u− u‖4/r

)[∫ t

0

‖u− u‖r
Lsdt′

]2/r

.

By the first a priori estimate for u and elementary properties of mollifiers,
we obtain that

∫ t

0
‖∇(u− u)‖2 dt′ → 0, as δ → 0, and sup0≤t≤t′‖u− u‖ → 0,

as δ → 0. Furthermore, by assumption u ∈ Lr(0, t; Ls(Ω)). Thus, the term∫ t

0 ‖u− u‖r
Lsdt′ → 0 as δ → 0.

Inserting these into (8.27) gives

1
2
‖φ(t)‖2+

∫ t

0

[(
1

Re
− 3ε

)
‖∇φ‖2 +

1
2
νF (δ)‖∇s(φ − φ)‖2

]
dt′

≤
∫ t

0

b(φ,u, φ) dt′ + Z(δ),

where Z(δ) denotes all the remaining terms, which vanish as δ → 0.
Consider the remaining term

∫ t

0
b(φ,u, φ) dt′. First, note that∫ t

0

b(φ,u, φ) dt′ = −
∫ t

0

(φ · ∇φ,u) + (φ · ∇φ,u − u) + ((φ − φ) · ∇φ,u) dt′.

Applying Serrin’s inequality term by term, gives∣∣∣∣ ∫ t

0

b(φ,u, φ) dt′
∣∣∣∣ ≤ C

(∫ t

0

‖∇φ‖2 dt′
)1− 1

r

·
(∫ t

0

‖u‖r
Ls‖φ‖2 dt′

)1/r

.

(This bound is, of course, improvable, but this form suffices for our purposes
here.) Thus,∣∣∣∣ ∫ t

0

b(φ,u, φ) dt′
∣∣∣∣ ≤ ε

∫ t

0

‖∇φ‖2 dt′ + C(ε)
∫ t

0

‖u‖r
Ls‖φ‖2 dt′.

Picking ε = 1/(8 Re) and inserting this in (8.28), gives

1
2
‖φ(t)‖2 +

∫ t

0

[
1
2

1
Re

‖∇φ‖2 +
1
2
νF (δ)‖∇s(φ − φ)‖2

]
dt′

≤ C(Re)
∫ t

0

‖u‖r
Ls‖φ‖2dt′ + Z(δ).
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The first result of the theorem now follows from Gronwall’s lemma.
For the second result, subtract the equation for u and w, multiply by

φ = u− w, and integrate over Ω. This gives, as before,

1
2
‖φ(t)‖2 +

∫ t

0

(
1

Re
+ νT

)
‖∇φ‖2dt′

=
1
2
‖φ(0)‖2 +

∫ t

0

[b(w,w, φ) − b(u,u, φ) + (T̃ − uu,∇sφ)] dt′.

The difference
∫ t

0
b(w,w, φ) − b(u,u, φ) dt′ is treated exactly as in the last

proof, while the last term is bounded by

|(T̃ − uu,∇sφ)| ≤ ε

2
‖∇φ‖2 +

1
2ε

‖T̃ − uu‖2.

Inserting this and applying Gronwall’s lemma yields the result. ��
To conclude this section, we prove the verifiability.

Theorem 8.13. Let u,w be strong solutions of the NSE and the S4 model,
respectively. Under the assumptions of the previous theorem, for any t ∈ (0, T ],

1
2
‖u(t) − w(t)‖2 +

(
1

Re
+ νT (δ)

)∫ t

0

‖∇(u− w)‖2 dt′

≤ C∗
∫ t

0

‖uu− T̃ (u,u)‖2 dt′,

where C∗ = C∗(Re, ‖u‖Lr(0,T ;Ls)).

Proof. We just sketch out this results, whose proof follows the same path of
the previous (for full details, see [185]). Subtracting and multiplying by φ,
gives

1
2
‖φ(t)‖2 +

∫ t

0

[
(νT (δ) 2∇sφ,∇sφ) +

1
Re

‖∇φ‖2

]
dt′

=
1
2
‖φ(0)‖2 +

∫ t

0

[
b(w,w, φ) − b(u,u, φ) − (T̃ − uu,∇sφ)

]
dt′.

Using this result and proceeding exactly as in the previous proof, completes
the proof of verifiability. ��

Conclusions on the S4 Model

The ultimate test of an LES model is naturally how close its predicted
velocity w matches u. Such studies are difficult and scarce, as noted by
Jimenez [172]. Thus, it is also interesting to seek qualitative (analytical) tests
for reasonableness. Since the kinetic energy in u is provably finite for all time,
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one such test is that the kinetic energy in the model is provably bounded,
which the S4 model satisfies.

Since u → u as δ → 0, another test is that w → u as δ → 0. This condition
was also established for the S4 model.

Further, we also show that the difference for this model between w and u
is bounded by a residual type modeling error term evaluated on the solution.
Thus, the quantitative accuracy of the model w as an approximation for u can
be evaluated by estimating the L2 norm of this residual in either a (moderate
Re) direct numerical simulation of u, or by data from observations of real
flows. Thus, the analytic information suggests that the S4 model is a reason-
able attempt. Its accuracy in practical settings remains an open question for
which computational studies are needed.

8.5 The First Energy-sponge Scale Similarity Model

Recall that the Bardina models approximation to τ (u,u) is given by

(uu − uu) ≈ SBardina(u,u) := uu − uu.

The Bardina model can be thought of as using the simplest possible approx-
imation to both terms in τ (u,u). The only simpler model possible is to ap-
proximate only one term in τ (u,u) – the term depending on u and not u.
This yields the model

(uu− uu) ≈ S(u,u) := uu− uu.

This new model is equivalent to the simple approximation to uu given by
uu ≈ uu which is O(δ2) consistent. Thus, in the usual expansion into re-
solved, cross, and subgrid-scale terms,

uu = (u + u′)(u + u′) = uu + uu′ + u′ u + u′ u′, (8.28)

S(u,u) is equivalent to simply dropping the last two terms which are of formal
order of O(δ2) and O(δ4) on the right-hand side.

The cross-terms uu′ + u′ u and u′ u′ on the right-hand side of (8.28) might
be small in laminar regions but they can be dominant in turbulent regions.
Thus, simply dropping them cannot be the ultimate answer: models are needed
(and will be given!) which are O(δ4) and O(δ6) accurate, and thus include the
effects of these terms.

With that said (and accepting for the moment that we are considering
a first step model whose accuracy will be increased), calling (w, q) (as usual)
the resulting approximation to (u, p), we arrive at the problem in Ω × (0, T ):

wt + ∇ · (ww) + ∇q − 1
Re

∆w = f (8.29)

∇ ·w = 0 . (8.30)
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Since we are studying the interior closure problem, we consider (8.29), (8.30)
on Ω = (0, 2π)3 and subject to periodic boundary conditions, the initial con-
dition w(x, 0) = u0(x) in Ω, and under the usual zero mean condition on all
data. In many ways, differential filters are very promising and the development
of this model supports this as well. In the development of the model (8.29),
the energy balance is also clearest with a simple differential filter.

Definition 8.14. Given a function φ ∈ L2(Ω), the differential filter of φ, φ,
is the solution of the boundary value problem

find φ ∈ L2(Ω) : −δ2 ∆φ + φ = φ in Ω,

subject to periodic boundary conditions.

For suitable functions φ, for example, φ ∈ L2(Ω),

φ = (−δ2∆ + �)−1φ.

Thus, this averaging has the following properties:

(−δ2∆ + �)φ = φ and (−δ2∆φ + φ) = φ.

The model (8.29) is a zeroth-order model in a very precise sense. The extrap-
olation u � u is exact on constant velocities (degree 0) flows. Further, if we
expand u = u + u′, we see that

uu = uu + uu′ + u′ u + u′ u′

and thus (8.29) is equivalent to simply dropping the cross-terms and the fluc-
tuation terms and keeping only the Leonard term uu.

If this term is further approximated by asymptotic approximation, such
as a Taylor series in δ, we obtain exactly the model studied by Leonard [212]
in one of the pioneering papers in LES. However, we wish to study the above
model, with no further approximation. In some sense, variations on (8.29)
should arise as a sort of primitive model in every family of LES models of
different orders. Thus, it could be called the primitive model, a Leonard model,
a zeroth-order model, and so on. Mathematically, in one case it has interesting
energy balance (derived in [210, 209]), which we develop next. This energy
balance leads us to think of it as an “energy sponge” model.

Before writing equations, recall that the LES closure model is thought of
as having two functions. The first is to accurately represent the unresolved
scales by the resolved scales. This first function is essential in having a model
which has high accuracy in smooth and transitional flow regions. The second
function is to subtract energy from the system to represent, in a statistical
sense, the energy lost to the resolved scales by breakdown of eddies from
resolved scales to unresolved ones. This lost energy must go somewhere. It
can be dissipated (that is, lost down an energy drain), or converted from one
type of system energy to another, conserving the total kinetic energy of the
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model. In this latter case it is acting as a sort of “energy sponge.” (The authors
learned this evocative description of energy drains versus energy sponges from
Scott Collis.)

The mathematical development of the model (8.29) is based upon a priori
bounds for weak solutions. These are proven using a limiting argument from
the kinetic energy equality for strong solutions. Thus, the next proposition is
the key to both the stability of the model and its mathematical development.

Proposition 8.15. Let u0 ∈ H and f ∈ L2(0, T ; H). For δ > 0, let the
averaging be defined through the application of (−δ2∆+ �)−1. If w is a strong
solution of the model (8.29), then w satisfies

1
2
[‖w(t)‖2 + δ2‖∇w(t)‖2

]
+
∫ t

0

1
Re

‖∇w(t′)‖2 +
δ2

Re
‖∆w(t′)‖2

dt′

=
1
2

[
‖u0(t)‖2 + δ2 ‖∇u0(t)‖2

]
+
∫ t

0

(f(t′),w(t′))dt′. (8.31)

Remark 8.16. The kinetic energy balance of the model in the previous propo-
sition has two terms which reflect extraction of energy from resolved scales.
The energy dissipation in the model

εmodel(t) :=
1

Re
‖∇w(t)‖2 +

δ2

Re
‖∆w(t)‖2

is enhanced by the extra term Re−1δ2‖∆w(t)‖2. This term acts as an irre-
versible energy drain localized at large local fluctuations. The second term,
δ2 ‖∇w(t)‖2

, occurs in the model’s kinetic energy

kmodel(t) :=
1
2

[
‖w(t)‖2 + δ2‖∇w(t)‖2

]
.

The true kinetic energy, 1
2 ‖w(t)‖2, in regions of large deformations is thus ex-

tracted, conserved and stored in the kinetic energy penalty term δ2 ‖∇w(t)‖2
.

Thus, this reversible term acts as a kinetic “energy sponge.” Both terms have
an obvious regularizing effect.

Remark 8.17. The key idea in the proof of the energy equality is worth noting
and emphasizing. The Navier–Stokes equations are well posed1 primarily be-
cause the nonlinear term ∇· (uu) is a mixing term which redistributes kinetic
energy rather than increasing it. Mathematically this is because of the skew-
symmetry property (∇· (uu),u) = 0. The main idea in the proof is to lift this
property of the NSE by deconvolution, to understand the energy balance in
the model. This is done as follows: noting that all operations are self-adjoint

1 In the sense described in Chap. 2: it is possible to prove existence of weak solutions
(due to the energy inequality) but the global existence of smooth solutions is still
an open problem!
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and, by definition of the averaging used, (−δ2∆ + �)φ = (−δ2∆ + �)φ = φ,
we have

(∇ · (ww), (−δ2∆ + �)w) = (∇ · (w w), (−δ2∆ + �)w)
= (∇ · (w w), (−δ2∆ + �)w)
= (∇ · (w w),w) (8.32)
= 0.

This idea was first used, to our knowledge, in the analysis of the Rational LES
model in [29].

Proof. Motivated by (8.32), multiply the model by (−δ2∆+�)w, and integrate
over the domain Ω. This gives

(wt, (−δ2∆ + �)w) + (∇ · (ww), (−δ2∆ + �)w) + (∇q, (−δ2∆ + �)w)

−
(

1
Re

∆w, (−δ2∆ + �)w
)

= (f , (−δ2∆ + �)w).

The second term vanishes by (8.32). The third term vanishes because ∇·w = 0,
and the last term equals (f ,w). Integrating by parts the first and fourth terms,
gives the differential equality

1
2

d

dt

[
‖w(t′)‖2 + δ2 ‖∇w(t′)‖2

]
+

1
Re

‖∇w(t′)‖2 +
δ2

Re
‖∆w(t′)‖2

= (f(t′),w(t′)).

Then, the result follows by integrating this equality from 0 to t. ��
The stability bound in Proposition 8.15 is very strong. Using Galerkin approx-
imations and this stability bound to extract a limit, it is straightforward to
prove existence for the model (following Layton and Lewandowski [209, 210]).

Theorem 8.18. Let the averaging operator be given by (−δ2∆ + �)−1, δ > 0
be fixed, and suppose u0 ∈ H and f ∈ L2(0, T ; H). Then, there exists a unique
strong solution to the model (8.29). Furthermore, that solution satisfies the
energy equality (8.31) and thus, for δ > 0,

w ∈ L∞(0, T ; H1) ∩ L2(0, T ; H2). (8.33)

Proof. The proof is very easy once the energy balance of Proposition 8.15 is
identified. Indeed, let ψr be the orthogonal basis for V of eigenfunctions of the
Stokes operator under periodic with zero mean boundary conditions. These are
also the eigenfunctions of (−δ2∆ + �) in the same setting. Thus, let −∆ψr =
λrψr. Let Vk := span {ψr : r = 1, . . . , k}. The Galerkin approximation wk :
[0, T ] → Vk satisfies, for all ψ ∈ Vk,

(∂twk, ψ) + (∇ · (wkwk), ψ) − 1
Re

(∆wk, ψ) = (f , ψ). (8.34)
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As usual, the Galerkin approximation (8.34) reduces to a system of ordi-
nary differential equations for the undetermined coefficients Ck,r(t). Existence
for (8.34) will follow from an a priori bound on its solution. Since wk(t) ∈ Vk,

it follows that (−δ2∆ + �)wk =
∑k

r=1(δ
2λr + 1)Ck,rψr(x) ∈ Vk. Thus it is

permissible to set ψ = (−δ2∆ + �)wk in (8.34). By exactly the same proof as
in Proposition 8.15, we have

1
2

[
‖wk(t)‖2 + δ2 ‖∇wk(t)‖2

]
+
∫ t

0

1
Re

‖∇wk(t′)‖2 +
δ2

Re
‖∆wk(t′)‖2

dt′

=
1
2

[
‖u0(t)‖2 + δ2‖∇u0(t)‖2

]
+
∫ t

0

(f(t′),wk(t′)) dt′.

The Cauchy–Schwartz inequality then immediately implies

‖wk‖L∞(0,T ;H1) ≤ M1 = M1(f ,u0, δ) < ∞;

‖wk‖L∞(0,T ;L2) ≤ M2 = M2(f ,u0) < ∞;

‖wk‖L2(0,T ;H2) ≤ M3 = M3(f ,u0, δ, Re) < ∞;

and (8.34) thus has a unique solution.
From the above a priori bounds and using exactly the same approach as

in the NSE case (following the beautiful and clear presentation of Galdi [121])
letting k → ∞, we recover a limit, w, which is (using the above stronger
a priori bounds) a unique strong solution of the model satisfying the energy
equality and belonging to (8.33), for δ > 0. ��

8.5.1 “More Accurate” Models

The regularity proven for the solution of this first model is very strong and
many more mathematical properties can be developed for it. However, it is also
important not to forget that it is a “mathematical toy” and not of sufficient
accuracy. Thus, it is important to find models with similar strong mathemati-
cal properties which are more accurate. The critical condition “more accurate”
is presently evaluated in two ways: analytical studies in smooth flow regions,
and experimental studies in turbulent flow regions.

Next, we turn to the modeling error in the simple model. Our goal is to
give an analytical study of the modeling error, in other words, to give an
a priori bound upon norm ‖u− w‖. To do this, we need a strong enough
regularity condition upon u to apply Gronwall’s equality uniformly in δ.

A sufficient condition for this is ‖∇u‖ ∈ L4(0, T ). This can obviously be
weakened in many ways. Next, we need a strong enough regularity condition
on u to extract a bound on the models consistency error evaluated at the true
solution in the norm L2(Ω × (0, T ), i.e. on

‖uu − uu‖L2(Ω×(0,T )) .
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It will turn out that a sufficient condition for this to be O(δ2), is

u ∈ L4(0, T ; H2).

To proceed, filtering the Navier–Stokes equations, shows that u satisfies, after
rearrangement,

ut + ∇ · (uu) + ∇p − 1
Re

∆u = f −∇ · ρ
∇ · u = 0,

where ρ is the consistency error term, in this case given by

ρ := uu− uu.

Theorem 8.19. Let the filtering be φ = (−δ2∆ + �)−1φ; let u be a unique
strong solution of the NSE satisfying the regularity condition u ∈ L4(0, T ; H1)
or Serrin’s uniqueness condition (2.31). Then, there exists a positive constant
C∗ = C∗(Re, T, ‖u‖L4(0,T ;H1)) such that the modeling error φ := u − w
satisfies

‖φ‖2
L∞(0,T ;L2) + δ2 ‖∇φ‖2

L∞(0,T ;L2) +
1

Re
‖∇φ‖2

L2(0,T ;L2)

+
δ2

Re
‖∆φ‖2

L2(0,T ;L2) ≤ C∗ ‖ρ‖2
L2(Ω×(0,T )) .

If additionally u ∈ L4(0, T ; H2), then the consistency error satisfies

‖ρ‖2
L2(Ω×(0,T )) ≤ C δ4 ‖u‖2

L4(0,T ;H2(Ω)) .

Proof. First, we note that by the definition of ρ and the Sobolev inequality:

‖ρ‖L2(Ω×(0,T )) = ‖uu− uu + uu− uu‖ ≤ 2 ‖u‖L∞(Ω) ‖u − u‖
≤ 2 δ2 ‖∆u‖2

.

Thus, by squaring and integrating, we have, as claimed: ‖ρ‖2
L2(Ω×(0,T )) ≤

C δ4 ‖u‖2
L4(0,T ;H2(Ω)) .

For the proof that the modeling error is bounded by the model’s consis-
tency error ρ, we subtract w from u and mimic the proof of the model’s
energy estimate. Indeed, the modeling error φ satisfies φ(0) = 0, ∇ · φ = 0,
and

φt + ∇ · (uu − ww) + ∇(p − q) − 1
Re

∆φ = −∇ · ρ, in Ω × (0, T ).

Under the above regularity assumptions, u is a strong solution of the Navier–
Stokes equations and φ also satisfies the above equation strongly. Thus, only
two paths are reasonable to bound φ by ρ:



8.6 The Higher Order, Stolz–Adams Deconvolution Models 219

(i) multiply by φ and integrate,
(ii) multiply by (−δ2∆ + �)φ and integrate.

Following the proof of the energy estimate, we use (ii). This gives, after steps
which follow exactly those in the energy estimate,

1
2

d

dt

[
‖φ‖2 + δ2 ‖φ‖2

]
+

1
Re

[
‖∇φ‖2 + ‖∆φ‖2

]
−
∫

Ω

(uu − ww)∇φ dx

=
∫

Ω

ρ∇φ dx.

The third term is handled in the standard way: adding and subtracting wu.
This gives ∫

Ω

(uu− ww) : ∇φ dx =
∫

Ω

φ · ∇φ · u dx.

Next, use the following inequalities, which are valid in two and three dimen-
sions (and improvable in two dimensions),∣∣∣∣∫

Ω

φ · ∇φ · u dx
∣∣∣∣ ≤ 1

4 Re
‖∇φ‖2 + C(Re) ‖u‖4 ‖φ‖2

,∣∣∣∣∫
Ω

ρ : ∇φ dx
∣∣∣∣ ≤ 1

4 Re
‖ρ‖2 + C(Re) ‖∇φ‖2

.

These give
1
2

d

dt

[
‖φ‖2 + δ2 ‖φ‖2

]
+

1
Re

[
‖∇φ‖2 + ‖∆φ‖2

]
≤ C(Re) ‖ρ‖2 + C(Re) ‖u‖4 ‖φ‖2

.

The theorem then follows by Gronwall’s inequality. ��

8.6 The Higher Order,
Stolz–Adams Deconvolution Models

The first model of Sect. 8.5 is based on an extrapolation from resolved to
unresolved scales which is exact on constants: u � u+O(δ2). It is immediately
clear how to generate more accurate models by higher order extrapolations
in δ. For example, with the differential filter φ = (−δ2∆ + �)−1φ, we can
approximate u � 2u− u, which is an exactly linear extrapolation in δ. This
gives the closure model

uu � (2u− u)(2u− u) + O(δ4).

Quadratic extrapolation reads φ � 3 φ−3 φ+φ, so the corresponding closure
model is

uu � (3 φ − 3 φ + φ)(3 φ − 3 φ + φ) + O(δ6).
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In this way, by using successively higher order extrapolations, we can gen-
erate closure models of any formal asymptotic accuracy we desire. For other
filters, such as sharp Fourier cut off, u = u, so these must be modified in the
obvious way, replacing u by gδ ∗ u and u by g√2δ ∗ u and so on.

Using successively higher order models we can then investigate analytically
and experimentally the right balance between accuracy and cost. The first step
is obviously to test the models and analyze their stability.

The family of models, so generated, coincide with the family of models
developed by Stolz and Adams [285, 289, 290, 3], by adapting the van Cit-
tert [36] deconvolution method from image processing to the closure problem
in LES. We thus turn to considering the very interesting Stolz–Adams decon-
volution/scale similarity models.

8.6.1 The van Cittert Approximations

Let Gφ = φ denote the filtering operator, either by convolution with a smooth
kernel or by the differential filter (−δ2∆ + �)−1.

Since G = � − (� − G), an inverse to G can be written formally as the
nonconvergent Neumann series

G−1 ∼
∞∑

n=0

(�− G)n.

Truncating the series gives the van Cittert Approximate Deconvolution oper-
ators [36],

GN :=
N∑

n=0

(�− G)n.

The approximations GN are not convergent as N goes to infinity, but rather
are asymptotic as δ approaches zero, as the next lemma shows.

Lemma 8.20. For smooth u, the approximate deconvolution GN has error

u− GNu = (−1)N+1 δ2N+2 ∆N+1,u pointwise and
‖u − GNu‖ ≤ δ2N+2 ‖u‖H2N+2(Ω) , globally.

Proof. This is a simple algebraic argument. Let A := (� − G) and note that
Aφ = φ − φ = −δ2∆φ. Then, with e = u − GNu, we have, by definition of
GN , u = u+Au+ · · ·+ANu+ e. Applying to both sides the operator A and
subtracting, gives, since �− A = G,

Gu = u − AN+1u + G e.

Or, as Gu = u, G e = e, applying (−δ2∆ + �) to both sides, implies e =
AN+1u, which, after rearrangement proves the lemma. ��
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Lemma 8.20 shows that GN u gives an approximation to u to accuracy
O(δ2N+2) in the smooth flow regions. Thus, it is justified to use it as a closure
approximation. Doing so, results in the family of Stoltz–Adams deconvolution
models

u u � GNu GNu + O(δ2N+2).

If τ denotes the usual subfilter-scale stress tensor τ (u,u) := uu − uu, then
this closure approximation is equivalent to the closure model

τ (u,u) ≈ τN (u,u) := GNu GNu − uu. (8.35)

We recall (see Chap. 6 for further details) that a tensor function τ (u,v) of
two vector variables is reversible if τ (−u,−v) = τ (u,v). In addition a ten-
sor τ is Galilean invariant if, for any divergence-free periodic vector field w
and any constant vector U, ∇ · τ (w + U,w + U) = ∇ · τ (w,w). These are
requirements for any satisfactory closure model; see p. 136. The interest in
reversibility and Galilean invariance is that the true subfilter-scale stress ten-
sor τ is both reversible and invariant. Thus, many feel that appropriate closure
models should (at least to leading-order effects) share these two properties.
(For a more detailed discussion on the properties that the subfilter-scale stress
tensor τ should satisfy, the reader is referred to Chap. 6.) We next show that
the model (8.35) is both reversible and Galilean invariant.

Lemma 8.21. For each N = 0, 1, 2, . . . , the Stolz–Adams closure model τ N

is both reversible and Galilean invariant.

Proof. Reversibility is immediate. Galilean invariance also follows easily once
it is noted that Uw = Uw, UU = UU, GNUw = UGNw, and ∇ · u =
∇ · GNu = · · · = 0. ��
The Stolz–Adams models are thus highly accurate, in the sense that their con-
sistency error is asymptotically small as δ approaches zero; they are reversible
and Galilean invariant. Their usefulness thus hinges on their stability prop-
erties. These were established by Dunca and Epshteyn [98] by an argument
similar to the one we give now.

Consider the model

wt + ∇ · (GNw GNw) + ∇q − 1
Re

∆w = f

∇ · w = 0

under periodic boundary conditions and zero spatial mean on all data and
on w. If the filter chosen is the differential filter φ = (−δ2∆ + �)−1φ, then
the natural lifting to the model (8.35) of the skew-symmetry property of the
nonlinearity in the Navier–Stokes equations is

(∇ · (GNw GNw), (−δ2∆ + �)GNw) = 0.
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Thus, the natural idea is to multiply (8.35) by (−δ2∆+�)GNw and integrate
over Ω. This gives, after obvious simplification which follows the work in the
previous section,

(wt, (−δ2∆ + �)GNw) − 1
Re

(∆w, (−δ2∆ + �)GNw)

= (f , (−δ2∆ + �)GNw) = (f , GNw).

By the choice of filter, it follows that ∆, (−δ2∆+ �), GN , and G all commute.
If GN is a positive operator, then it has a positive square root A, i.e. an
operator such that A2 = GN . If this A exists, then we can integrate this last
equation by parts to get

(Awt, (−δ2∆ + �)Aw) +
1

Re
(∇Aw,∇Aw) +

δ2

Re
(∆Aw, ∆Aw) = (f , GNw),

or

1
2

d

dt

[
‖Aw(t)‖2 + δ2 ‖∇Aw(t)‖2

]
+

1
Re

‖∇Aw(t)‖2 +
δ2

Re
‖∆Aw(t)‖2

= (f(t), GNw(t)).

From this, flows an energy inequality which is the key turning the lock, opening
the mathematical foundation of existence, uniqueness, and regularity for the
model. Thus, the essential point is to verify that GN is a positive operator.

Lemma 8.22. Let the averaging be defined by (−δ2∆ + �)−1. Then GN :
L2

0(Ω)d → L2
0(Ω)d is a bounded, symmetric positive-definite operator.

Proof. First, since Gφ = (−δ2∆+ �)−1φ, is symmetric and bounded and GN

is a function of G it follows that GN is itself symmetric and bounded. To show
GN is positive definite we use Fourier series. Namely, we expand φ in terms
of its Fourier coefficients

φ =
∑

j∈Zd, j�=0

aj ei j·x,

where j �= 0, derives from the fact that
∫

Ω
φ dx = 0. In wavenumber space

the operator G and G−1 act in a very simple manner and this implies

φ =
∑

j∈Zd, j�=0

(δ2 |j|2 + 1)−1aj ei j·x.

Then, it follows that

(�− G)kφ =
∑

j∈Zd, j�=0

aj

[
1 − (δ2 |j|2 + 1)−1

]k
ei j·x.
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or, after simplification,

(�− G)kφ =
∑

j∈Zd, j�=0

(
δ2 |j|2

δ2 |j|2 + 1

)k

aj ei j·x.

Taking the L2-scalar product with φ we finally obtain

(φ, (�− G)kφ) =
∑

j∈Zd, j�=0

(
δ2 |j|2

δ2 |j|2 + 1

)k

|aj|2.

Thus, (� − G) is positive-definite provided the multiplier on the right-hand
side is positive. That is, provided δ2|j|2

δ2|j|2+1 > 0 for j �= 0. By direct inspection,
this is true, and (� − G) is positive. Since (� − G) is positive, GN is then
a sum of symmetric positive definite operators, and hence symmetric positive
definite itself. The lemma is proven. ��

Since existence of a positive square root of GN , A = G
1
2
N , is proven, existence

follows together with uniqueness, regularity, and an energy equality. We will
omit the proof here since it follows the pattern of the proof in Sect. 8.5 with
only added technical complexities.

Theorem 8.23. Let the averaging be defined by (−δ2∆ + �)−1. Suppose
u0 ∈ V , and f ∈ L2(0, T ; H). Let δ > 0. Then, the Stolz–Adams deconvo-
lution model has a unique strong solution. That solution satisfies the energy
equality below:

1
2

[
‖Aw(t)‖2 + δ2 ‖∇Aw(t)‖2

]
+
∫ t

0

1
Re

‖∇Aw(t′)‖2 +
δ2

Re
‖∆Aw(t′)‖2

dt′

=
1
2

[
‖Au0(t)‖2 + δ2 ‖∇Au0(t)‖2

]
+
∫ t

0

(f(t′), GNw(t′)) dt′,

where A = G
1
2
N .

8.7 Conclusions

Scale similarity models in general, and the Stolz–Adams approximate decon-
volution models in particular, represent an extremely promising path for the
future development of LES. In particular, the Stolz–Adams approximate de-
convolution approach gives a family of models that are both highly accu-
rate and have excellent stability properties. It seems appropriate to call all
these model predictive models and to lump many other models based on phe-
nomenology into the category of descriptive models.

The Stolz–Adams approximate deconvolution models are very recent and
many open questions remain for their development. One important topic we
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have not discussed is the development of good algorithms for these models.
The filtering in the operator GN almost forces these terms to be treated explic-
itly. While quite easy in typical compressible flow problems in gas dynamics,
explicit treatment requires more algorithmic finesse in incompressible flows.

The van Cittert is only the simplest (and possibly least effective) deconvo-
lution procedure from image processing. Thus, an important open path for the
development of LES is to incorporate and test more accurate deconvolution
methods in LES models.



Part IV

Boundary Conditions



9

Filtering on Bounded Domains

One basic problem which is reported in many experimental assessments of
LES is:

LES continues to have difficulties predicting near wall turbulence
and to have still more difficulties predicting turbulence driven by
flow/boundary interactions.

These reports clearly provide strong motivations to explore carefully the
closure errors related to filtering on a bounded domain. To emphasize fur-
ther the importance of boundaries and wall treatments, recall the result of
classical mathematical fluid mechanics (e.g. in Serrin’s 1959 article [274] or
Poincaré [257]) that in problems with irrotational initial conditions and po-
tential body forces, all vorticity comes from the boundary. Indeed, in this case
the vorticity ω = ∇× u satisfies

ωt + u · ∇ω − 1
Re

∆ω = ω · ∇u in Ω × (0, T ) (9.1)

and if ω(x, 0) = 0 and ω|∂Ω = 0 (no vorticity is generated at the boundary)
then all problem data is zero and it is easy to show that thereafter ω ≡ 0 in
Ω × (0, T ).1

One popular treatment of boundary conditions in LES is to let the radius
of the filter, δ, approach 0 at the solid surface,

δ = δ(x) → 0 as x → ∂Ω.

1 In practical flows, ω = 0 on the boundary is not an appropriate boundary con-
dition and this is a strong limitation in the use of the vorticity equation in the
presence of boundaries. In several cases there is a lack of knowledge of the values
of the vorticity on the boundary. From the mathematical point of view the main
problem is due to the fact that the boundary integrals arising in the integration
by parts needed in the derivation of energy estimates for ω do not vanish.



228 9 Filtering on Bounded Domains

Then, the boundary conditions at the wall are clear: u = 0 on ∂Ω. Thus,
loosely speaking, the LES model is reduced to a DNS at the wall. There are,
however, serious mathematical and algorithmic open questions associated with
this approach.

From the theoretical point of view it is clear that by considering a variable
filter width δ(x), commutation errors Ei[u](x) (depending on the function u,
on the point x, and on the direction ei) are introduced in LES models since,
for variable δ,

Ei[u](x) :=
∂u(x)
∂xi

− ∂u(x)
∂xi

�= 0 for i = 1, . . . , d,

even for a very smooth scalar function u. Some progress has been made on
the numerical analysis and the estimation of the size of the error that is
committed, see Fureby and Tabor [119], Ghosal and Moin [136], and Vasilyev
et al. [304], but many questions remain unanswered.

In the above references, the proofs are mainly based on one-dimensional
Taylor series expansion for very smooth functions. It has been argued that
these commutation errors can be neglected in applications, provided special
filters with vanishing moments are used over smooth enough functions. There
are, however, interesting and relevant mathematical challenges associated with
this approach.

There is also an intense study of the associated commutation errors. For
important recent advances, see the work of van der Bos and Geurts [299],
Iovieno and Tordella [171], and Berselli, Grisanti, and John [32], where the
commutation error is estimated in the presence of functions with low regularity
properties.

The second drawback is more practical in nature: since the filter radius
δ(x) is decreased near the wall, the numerical resolution needed is greatly in-
creased, because the mesh size must be accordingly reduced to resolve at least
the inner layers near the wall. By using the approach introduced by Chap-
man [58], recently Piomelli and Balaras [253] presented an estimate for the
computational cost for LES of turbulent channel flows. The flow is divided
into an inner layer in which the effects of viscosity are important, and an
outer layer in which the direct effects of viscosity on the mean flow are negli-
gible. First, grid-resolution requirements are presented for the inner and outer
layers separately. Then, the computational cost associated with the time in-
tegration is derived, based on the need to resolve the life of the smallest eddy.
Based on these estimates, the total computational cost scales like Re0.5 for
the outer layer, and Re2.4 for the inner layer. In a wide range of flows in the
geophysical sciences (meteorology and oceanography) and engineering (ship
hydrodynamics and aircraft aerodynamics) the Reynolds number is very high,
of the order of tens or hundreds of millions. Based on the above estimate, the
computational cost for the LES approaches that aim at resolving the inner
layer is unfeasible for these applications.
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A common attempt to overcome the presence of commutation errors (and
related problems) is through near wall models. We review some of these models
in Chap. 10. In the next sections we sketch out the main ideas and results
in the use of nonuniform (namely, with nonconstant radius) filters. If the
computational complexity of LES is to be truly independent of the Reynolds
number, some sort of filtering through the boundary must be performed in the
modeling step. We also present an analysis of one such approach: a constant
filter width δ is used and the filtering goes through the boundaries.

Plan of the Chapter

Part of this chapter is rather technical and could seem difficult at first reading.
This is due to the fact that Chap. 9 presents some delicate topics that repre-
sent, to some extent, the state-of-the-art of current research in LES. In fact,
many of the results we report are going to appear or are recent findings in the
mathematical study of turbulent flows. A strong interest in the commutation
error is rather new in the mathematical LES community and our intent is, at
least, to get the reader interested in this new and challenging topic.

In particular, at some points in this chapter a deeper knowledge of analysis
is needed. Understanding filtering in the presence of boundaries is necessarily
technical, even if some hand-waving arguments are allowed. Our aim is to give
the main ideas of this important topic. We will also emphasize what could
happen if the flow variable to be filtered is not smooth, a common situation
in computational fluid dynamics.

First, we will derive the basic equations involving filtering with non-
constant radius, together with their error estimates that involve delicate issues
(and ugly formulas) regarding Taylor series expansion.

Then, we will briefly consider the problems arising in the filtering after
a zero extension outside the physical domain. In the last section we will use
advanced tools in distribution theory (some knowledge of geometric measure
theory will be necessary for a better understanding) to properly write the
filtered equations and to derive suitable estimates for the commutation error.

9.1 Filters with Nonconstant Radius

In this section we summarize the approach of Ghosal and Moin [136] and we
show how it is possible to properly define filtering also in complex geometries,
and hence in the presence of boundaries. We start by considering the one-
dimensional case. The filtering is defined, as usual, by

u(x, t) = (gδ ∗ u)(x, t) :=
1
δ

∫
�

g

(
x − y

δ

)
u(y, t) dy,

where the function g is generally smooth, even, and fast decaying at infinity,
see Chap. 1. In situations where the domain is finite (or at least semi-infinite)
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the above definition may have several generalizations. In the case of the box
filter a generalization might be, if u : (a, b) → � is given,

u(x, t) =
1

δ+(x) − δ−(x)

∫ x+δ+(x)

x−δ−(x)

u(y, t) dy,

where δ+(x) and δ−(x) are nonnegative functions and δ+(x) − δ−(x) is the
“effective filter width” at location x.

In this case (others can be treated similarly), both δ+(x) and δ−(x) must
go to zero sufficiently fast at the boundaries, so that

(x − δ−(x), x + δ+(x)) ⊆ (a, b),

i.e. the window of values used in the filtering must remain always in the
domain of definition of the function u. In this special case it is well known
that the commutation error does not vanish. To stress the importance of this
source of error, we cite Ghosal and Moin [136]:

One would like to believe that the commutation error would be small
for some reasonable class of non-uniform filters, but this has never
been conclusively demonstrated . . .

Some analysis of this topic will be given later. Therefore, a new closure prob-
lem arises not only for the nonlinear term, as we extensively analyzed in the
previous chapters, but also for the linear terms.

9.1.1 Definition of the Filtering

In order to extend the above “generalized box filter” to other filters, a possible
approach is that of mapping the interval (a, b) onto the whole real line, by
means of a mapping function f : (a, b) → � that is monotonically increasing
and smooth, such that

lim
x→a

f(x) = −∞ and lim
x→b

f(x) = +∞.

A nonuniform radius δ(x) is then defined by

δ(x) =
δ

f ′(x)
.

This implies that both f ′(a) and f ′(b) must be infinite, thus the filtering kernel
becomes the “Dirac’s delta-function” (see p. 243) at the finite boundaries.
A classical choice for the function f is

f(x) = tanh−1

(
2x

b − a
− a + b

b − a

)
for a ≤ x ≤ b,
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which is related to the “tan-hyperbolic grid,” used for instance in channel flow
computations [240].

Given an arbitrary scalar function u(x), we first make a change of variables,
to obtain the new function

φ(ξ) = u(f−1(ξ)) ∀ ξ ∈ �.

The function φ : �→ � is then filtered according to the usual definition by
means of a convolution. Finally, we transform back to the variable x. Thus,

φ(ξ) =
1
δ

∫
�

g

(
ξ − η

δ

)
φ(η) dη (9.2)

or, by using the mapping function f,

u(x) =
1
δ

∫ b

a

g

(
f(x) − f(y)

δ

)
u(y)f ′(y) dy. (9.3)

The above equivalent expressions (9.2) and (9.3) are called second-order com-
muting filter. This definition is motivated by the fact that the commutation
error satisfies (for smooth u and non uniformly in Re)

E [u] = O(δ2).

The proof of this result uses in an essential manner the fact that the kernel g
is symmetric and also that the function u and f can be expanded as a Taylor
series, up to a certain order; see [136].

In the three-dimensional case the filtering may be defined in a similar way
through a kernel that is the product of three one-dimensional kernels. If

X = H(x) (9.4)

defines the change of variables from the physical domain Ω to �3, we trans-
form the field u(x) (as well as a scalar or a tensor valued function) to be
filtered into φ(X) = u(H−1(X)). Then, the function φ(X) is filtered in the
usual way:

φ(X) =
1
δ3

∫
�3

3∏
i=1

g

(
Xi − Yi

δ

)
u(H−1(Y)) dY

and, coming back to the physical space,

u(x) =
1
δ3

∫
�3

3∏
i=1

g

(
Hi(x) − Hi(y)

δ

)
u(y)J(y) dy,

where J(x) is the Jacobian of the transformation (9.4).
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Remark 9.1. The mapping technique from the computational space to a com-
putational domain is not very easily applicable in the case of unstructured
meshes and when using finite-volume or finite-element methods. Alternative
methods have been proposed, see for instance Fureby and Tabor [119] and the
references in the rest of the chapter.

A way to “reduce” the error is proposed in Vasilyev, Lund, and Moin [304] and
Marsden, Vasilyev, and Moin [231]. They consider (for simplicity we reduce
again to the 1D case) a general filtering (studied also by van der Ven [301])
defined by

u(x) =
1

δ(x)

∫ b

a

g

(
x − y

δ(x)
, x

)
u(y) dy =

∫ x−a
δ(x)

x−b
δ(x)

g(η, x)u(x − δ(x)η) dη, (9.5)

where g(x, y) is a “location-dependent” filter function. By using a Taylor series
expansion it is possible to deduce better estimates on the commutation error.
Namely, by defining the “moments” of g as

M l(x) =
∫ x−a

δ(x)

x−b
δ(x)

ηl g(η, x) dη

and by taking the Taylor series expansion2 of u(x−δ(x)η) in powers of δ gives

u(x − δ(x)η) =
∞∑

l=0

(−1)l

l!
δl(x)ηl dl

dxl
u(x).

Substituting the expansion in (9.5) we obtain

u(x) =
∞∑

l=0

(−1)l

l!
δl(x)M l(x)

dl

dxl
u(x)

and if we suppose that

M l(x) =

{
1, l = 0
0, l = 1, . . . , N − 1,

(9.6)

it is possible to show that the commutation error has the following expression:

E [u](x) =
∞∑

l=N

(−1)l

l!
dl

dxl
u(x)

d

dx

[
δl(x)M l(x)

]
.

2 In particular, this series is convergent in the case of uniform δ, by assuming that
the Fourier spectrum of u does not include wavenumbers higher than some finite
cut-off wavenumber. To some extent, this is the real critical point when filtering
is applied to nonsmooth functions.
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This shows that if (9.6) holds3, then

E [u](x) = O(δN (x)), (9.7)

provided δ′(x) = O(δ).

Remark 9.2. Other generalizations are possible. In particular, since generally
the function g is even, the first moment vanishes. A particular important case
of skewed filter is the box filter if δ+ �= δ−. In this case the first moment is
nonvanishing and some properties are dramatically different.

A recent analysis of skewed (or a-symmetric) filters is also performed in van der
Bos and Geurts [300, 299]. In these papers it is shown how the commutation
error may be relatively big in comparison to the SFS stress tensor. By using
the same assumption (9.6) on the moments it is shown that the commutation
error satisfies (9.7), while

τ [u] = u u − u u = O(δN (x)) for N ≥ 2.

Consequently, the relevant dτ [u]
dx scales with terms of O(δN ) as well as with

terms of O(δ′δN−1). This result is confirmed through a priori tests on a tur-
bulent mixing layer set of data. The numerical experiments show (especially
if the filter is skewed) that the contribution from the commutation error is
not negligible if compared to the subfilter-scale term and so it is necessary
to take this observation into account in the design of advanced LES models.
Note that the tests described in [299] do not allow the filter width to degen-
erate, i.e. δ(x) ≥ δ0 > 0. To continue with the theoretical analysis, in the
recent report [34] we compared explicitly (and also asymptotically) these two
terms in the case of a couple of near wall models. We used the box filter and
a nonuniform filter of radius δ(x), which do vanish at the boundaries. In these
simple, but significant, cases we found that the commutation error may have
the same (or even worse) asymptotic behavior as the divergence of the SFS
stress tensor but, in the boundary layer,

E [u](x) ≥ dτ [u](x)
dx

if x is “near” ∂Ω.

Details on the possible implementation of high order commuting filters are also
given in [304, 231], where a discrete version of the filter is defined, achieving
both commutation (up to some given order) and an acceptable filter shape in
wavenumber space. The main idea, in the case of a 1D grid with points xi, is
to define the value of the filtered variable at the grid point xi by the relation

ui =
l=N∑

l=−N

alui+l,

3 Clearly a hidden hypothesis in this application of the Taylor series expansion is
that the all derivatives of u, up to the order N , exist and are bounded.
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where N is now the radius if the discrete filter stencil. The discrete fil-
ter is symmetric if al = a−l; the constant preservation is represented by∑N

l=−N al = 1. A connection between discrete filters and convolution kernel
or between discrete filters and continuous differential operators is explained
in [267], Chap. 10. The main point in defining these filters is to properly choose
the coefficients al. Common choices are the following three-point symmetric
filters:

Table 9.1. Coefficients of some discrete symmetric filters

a−1 a0 a1

1/4 1/2 1/4
1/6 2/3 1/6

Full details and the implementation in the multi-dimensional case, can be
found in Sect. 3 of [231].

9.1.2 Some Estimates of the Commutation Error

In the previous section we showed some properties of the commutation error
arising from filters with variable width and also some possible strategies to
reduce it. The estimates proposed in the cited references show some good
asymptotic behavior of the commutation error, but unfortunately they are
based on the assumption that sufficiently precise Taylor series expansions are
known for the functions to be filtered. This is very unlikely in the case of
turbulent flows, since the fields to be filtered are generally nonsmooth. In this
respect, we derived some estimates by requiring less restrictive constraints on
the functions. In particular, in [32] we derived, in some cases, estimates on
the commutation error that require just Hölder continuity of the functions to
be filtered.

We now specialize to a particular class of filters. We start by showing the
effect of a nonuniform filter width for a filter similar to the Gaussian filter
over the whole space, i.e. without the presence of boundaries. This section
“sets the stage” for the next one. The type of filtering is essentially that of
van der Ven [301].

Let u ∈ C1(�d)∩Cb(�d) (space of continuously differentiable and bounded
functions) be a given function and let δk(x) ∈ C1

b (�d) denote the width of
the filter in the direction of xk. The average of u is then defined by a tensor
product of 1D filters:

u(y) =
d∏

k=1

1
δk(y)

∫
�d

d∏
l=1

g

(
xl

δl(y)

)
u(y − x) dx.

For the moment let us suppose that g is a filter without compact support, but
decaying fast enough at infinity in such a way that (possibly after “normaliza-
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tion”) g is constant preserving, the first moment of the filter kernel vanishes,
and the second one is bounded, i.e.∫ ∞

−∞
g(x) dx = 1,

∫ ∞

−∞
g(x)x dx = 0 ,

∫ ∞

−∞
g(x)x2 dx = M2 < +∞.

The most popular example for such a filter kernel is the Gaussian (1.17) that
we have encountered several times and for which it is well known that∫ ∞

−∞
g (x)xkdx =

⎧⎨⎩
0 if k is odd
1
2k

1
3k/2

3 5 · · · (k − 1) if k is even.

To keep the notation concise, we define the abbreviations A(y) =
∏d

k=1 δk(y),

G(x,y) =
d∏

k=1

g

(
xk

δk(y)

)
and Gl(x,y) =

d∏
k=1,k �=l

g

(
xk

δk(y)

)
,

such that
u(y) =

1
A(y)

∫
Rd

G(x,y)u(y − x) dx.

A direct and explicit calculation shows that

∂iu(y) = − 1
A(y)

[(
d∑

k=1

∂iδk(y)
δk(y)

)∫
Rd

G(x,y)u(y − x) dx

−
∫

Rd

(
d∑

l=1

Gl(x,y)g′
(

xl

δl(y)

)
xl∂iδl(y)
δl(y)2

)
u(y − x) dx

+
∫

Rd

G(x,y)∂iu(y − x) dx

]
,

(9.8)

where ∂i = ∂/∂xi. The last term in (9.8) is just ∂iu; consequently the ith
component of the commutation error is the sum of the other two terms. The
commutation error is now transformed, by using the following integration by
parts:

1
δl(y)

∫
Rd

Gl(x,y) g′
(

xl

δl(y)

)
u(y − x) dx =

∫
Rd

G(x,y)∂lu(y − x) dx,

1
δl(y)

∫
Rd

Gl(x,y) g′
(

xl

δl(y)

)
xlu(y − x) dx = −

∫
Rd

G(x,y)u(y − x) dx

+
∫

Rd

G(x,y)xl∂lu(y − x) dx.
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The vanishing of these terms at infinity follows from the assumption on the
fast decay of g as |x| → +∞. Inserting these expressions into (9.8) shows that
the first term of (9.8) cancels out and yields the following lemma:

Lemma 9.3. Let u ∈ C1(�d) ∩ Cb(�d), and δl ∈ C1
b (�d), for l = 1, . . . , d.

Then, the i-th component of the commutation error can be written in the
following special form:

Ei[u](y) =
d∑

l=1

[
∂iδl(y)
δl(y)

(
xl∂lu − yl∂lu

) ]
.

The above representation formula, derived and studied in [32], can be used
to obtain a pointwise estimate for the commutation error, as stated in the
following proposition:

Proposition 9.4. Let u ∈ C2
b (�d), the first moment of the filter kernel vanish

and the second moment simply exist, and δl ∈ C1
b (�d), for l = 1, . . . , d. Then,

|Ei[u](y)| ≤ ‖u‖C2(�d)|M2|
(

d∑
l=1

|∂iδl(y)δl(y)|
)

.

The proof is elementary but it is rather long and not necessary at a first
reading, so we prefer not to reproduce it here. We refer to [32] for the proof
also in the presence of a more general filter that allows “translation” of the
center of the domain of integration.

Remark 9.5. The result in the above proposition shows, in particular, that the
value of the commutation error associated with the derivative with respect
to xi depends not only on the derivative with respect to xi of δi(y), but
also on the xi-derivative of all the filter widths. The commutation error has
contributions from all the different directions: the value of Ei will depend on
the variations of all δl with respect to the direction xi.

An Example of a Filter with Compact Support: The Box Filter

We now study filters with compact kernels which are applied to functions u
defined on a bounded domain Ω. An essential feature is that the application
of the filter must lead to integrals whose domain of integration is a subset of
Ω, i.e. in any direction the filter width at a point y is not allowed to be larger
than the distance of y to the boundary, in that direction. This situation has
the appealing property that an extension of u outside Ω is not necessary. As
we have seen in the 1D case, this requirement implies that the filter width has
to tend to zero (at least in one direction) as the point y in which u is filtered
tends to the boundary ∂Ω. Thus, necessarily, the filter width is a function
of y. We also study the case in which the center of the (asymmetric or skewed
filter) filter kernel is not in y.



9.1 Filters with Nonconstant Radius 237

Let g be a filter kernel with support in [−1/2, 1/2] (without loss of gener-
ality) which is normalized. Moreover, we assume again that∫ 1/2

−1/2

g(x) dx = 1 ,

∫ 1/2

−1/2

g(x)x dx = 0 ,

∫ 1/2

−1/2

g(x)x2 dx = M2,

and the most popular filter which fits into this framework is the box or the
top-hat filter (1.15).

Let Ω ⊂ �
d be a bounded domain, u ∈ C1(Ω), δl(y) ∈ C1(Ω) be the

scalar filter widths with δl(y) ≥ 0 for all y ∈ Ω and δl(y) > 0 for all y ∈ Ω,
l = 1, . . . , d. We denote by B(y) = [−δ1(y), δ1(y)] × · · · × [−δd(y), δd(y)] and
we assume that

y + B(y) := [y1 − δ1(y), y1 + δ1(y)] × · · · × [yd − δd(y), yd + δd(y)] ⊂ Ω

for all y = (y1, . . . , yd) ∈ Ω. Denoting A(y) = 1/
∏d

l=1(2δl(y)), the average
of u is defined by

u(y) =
1

A(y)

∫
y+B(y)

d∏
l=1

g

(
yl − xl

2δl(y)

)
u(x) dx

=
1

A(y)

∫
B(y)

d∏
l=1

g

(
xl

2δl(y)

)
u(y − x) dx.

By using the same elementary tools as integration by parts and direct calcu-
lations it is possible to derive the following representation formula.

Lemma 9.6. Let u ∈ C1(U(y)), where U(y) is a neighborhood of y such that
y + B(y) ⊂ U(y), δ+

l (y) ∈ C1(U(y)) and δ−l (y) ∈ C1(U(y)), l = 1, . . . , d.
Then, the i-th component of the commutation error has the form

Ei[u](y) =
d∑

l=1

[
∂iδ

+
l (y) + ∂iδ

−
l (y)

δ+
l (y) + δ−l (y)

(
xl∂lu − yl∂lu

)
(y)

+
∂iδ

+
l (y)δ−l (y) − ∂iδ

−
l (y)δ+

l (y)
δ+
l (y) + δ−l (y)

∂lu(y)

]
.

From this formula it is possible to prove an estimate similar to the previous
one.

Proposition 9.7. Let u ∈ C2(U(y)), where U(y) is defined in Lemma 9.6.
Assume that the first moment of the filter kernel vanishes, the second moment
exists, δ+

l (y) ∈ C1(U(y)), and δ−l (y) ∈ C1(U(y)), l = 1, . . . , d. Then



238 9 Filtering on Bounded Domains

|Ei[u](y)| ≤
∣∣∣∣∣

d∑
l=1

∂iδ
+
l (y) − ∂iδ

−
l (y)

2
∂lu(y)

∣∣∣∣∣
+‖u‖

C2(U(y))

[
d∑

k,l=1

|δ+
k (y) − δ−k (y)| |∂iδ

+
l (y) − ∂iδ

−
l (y)|

4

+
d∑

l=1

|M2|
∣∣∂iδ

+
l (y) + ∂iδ

−
l (y)

∣∣ (δ+
l (y) + δ−l (y)

) ]
.

In the case of a symmetric filter, i.e. δ+ = δ−, the estimate becomes much
shorter and it is really important to note that the norm in C2 must be eval-
uated only in a small neighborhood U(y) of the point y. This reflects the
“local” nature of the process of filtering.

The Case of Non-very-smooth Functions

In [32], we also studied the problem of the commutation error arising in the
filtering of nonsmooth functions. This is motivated by the fact that velocity
in weak solutions to the Navier–Stokes equations is found in W 1,2(Ω) and, in
both 2D and 3D, W 1,2(Ω) �⊂ L∞(Ω). In special cases (for instance small data
or for small time intervals), we have seen that it is possible to prove that the
solutions to the Navier–Stokes equations are “strong” and that u belongs for
instance to W 2,2(Ω) ⊂ C0,1/2(Ω), see Chap. 2. This means that the study of
Hölder-continuous functions may be a first step toward the analysis of func-
tions with the regularity of a weak solution. Furthermore, the corresponding
weak pressure solution is even less regular than the velocity.

It is not possible to prove the same results when the domain Ω ⊂ R3 is
a polyhedral domain. A regularity result for such a problem has been found
in [88]:

u ∈ W 3/2−ε,2(Ω) and p ∈ W 1/2−ε,2(Ω), ∀ ε > 0.

An “interior regularity” result still holds and u ∈ W 2,2(Ω′), with p ∈
W 1,2(Ω′) for each Ω′ such that Ω′ ⊂ Ω. We observe that the Sobolev embed-
ding theorem (see [4]) implies, for instance, that p ∈ Lγ(Ω) for 2 ≤ γ < 3.
This means that near a possibly singular point x0 the pressure may have
a behavior of the form

|p| ∼ 1
‖x− x0‖α

for α < 1.

In the presence of re-entrant corners, like the backward-facing step, the be-
havior could be even worse.

Having in mind this motivation, we proved (together with some numerical
illustrations) in [32] the following result:
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Proposition 9.8. Let u ∈ C0,α(Ω), α ∈ (0, 1] and δl(y) ∈ C1(U(y)), for
l = 1, . . . , d Then

Ei[u](y) ≤ Mα

∣∣∣∣∣
d∑

l=1

∂iδl(y)
δl(y)

∣∣∣∣∣
(

d∑
l=1

4δl(y)2
)α/2

.

This result can be obtained through explicit use of the expression for the
commutation error and needs just the Hölder continuity of the function u.

Remark 9.9. As pointed out in [133] (together with an estimate of the commu-
tation error and a comparison with the SFS stress tensor), it is also necessary
to take into account more subtle properties. In fact, the estimates used to
derive the leading term of the commutation error do not give any informa-
tion about the spectral content of the analyzed signal. Due to the presence
of significant energy in the high frequency portion of the LES spectrum, the
commutation error could be large even if it is smaller or comparable with
the SFS stress tensor. In this respect see the recent advances on the use of
the “local spectrum” analysis in Vasilyev and Goldstein [303]. For details,
we refer the reader to the bibliography. Here we just present the main ideas
used in [136] to study the spectral distribution of the commutation error. Con-
sider a function u(x) =

∑
k ûkeikx, i being the imaginary unit. The two main

operations become

du

dx
= ik u and

du

dx
= ik u.

A possible way to measure the commutation error is to compare the wavenum-
ber k with the “modified wavenumber” k′, the latter being chosen such that

ik u = ik′ u.

Then, the departure of k′ from k is a measure of the commutation error, which
clearly vanishes if k = k′. Some manipulations lead to the following expression
for the ratio between k′ and k:

k′

k
= 1 − iδ

f ′′

f ′2

∫ +∞
−∞ η g(η) sin(kδη/f ′) dη∫ +∞
−∞ η g(η) cos(kδη/f ′) dη

.

On Differential Filters

The presence of a commutation error has been also observed by Germano [126,
127] who introduced differential filters in the study of LES. In particular, he
considered the linear differential operator

L u = u + αi(x)
∂u

∂xi
− αij(x)

∂2u

∂xi∂xj
with αij = αji,
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where αi, and αij are given smooth functions of x such that:

∃α > 0 :
3∑

ij=1

αij(x)xixj ≥ α|x|2 a.e. x ∈ �d.

The “principal fundamental solution” G(x,x′) is a “solution” of L u = 0,
defined in the whole space, such that

G = O(1/r) as r → 0 and G = O(e−r) as r → ∞,

where r = |x− x′|. It is well known from the theory of elliptic equations (see
for instance Miranda [238]) that for each regular function f , increasing to
infinity at most polynomially as |x| → ∞, we have the following representation
formula:

f(x) =
∫
�3

G(x,x′)f(x′) dx′

for the solution of

f + αi(x)
∂f

∂xi
− αij(x)

∂2f

∂xi∂xj
= f.

An important fact is that, if αi, αij are not constant, then the function G is
not simply a function of x − x′. This implies that the process of derivation
and filtering do not commute.

However, by explicit computation it follows that

Ek[f ] =
∂f

∂xk
− ∂f

∂xk
=

3∑
i=1

∂αi

∂xk

∂f

∂xi
−

3∑
ij=1

∂αij

∂xk

∂2f

∂xi∂xj
.

The commutation error can be expressed exactly on the resolvable scale, like
the well-known Leonard stresses. This peculiar property of linear differential
filters can be utilized in numerical computations.

Other differential filters may be introduced and they can be classified as
elliptic, parabolic or hyperbolic, according to the type of linear differential
operator involved. In this section, in the spirit of the book, we focused on the
mathematical properties of some filters. Other important physical constraints
must be taken into account in the choice of the filter. This is itself a broad
and complex problem, e.g. Sagaut [267] and Germano [128].

9.2 Filters with Constant Radius

In this section, we analyze an approach that is, to some extent, dual to that
of allowing for variations of the filter radius. Specifically, we analyze in more
detail the mathematical consequences of using a constant filter, in the pres-
ence of boundaries. The main advantages of using a constant radius filter are:
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(i) the commutation error Ei[u](x) disappears; and (ii) the prohibitive compu-
tational cost (scaling as Re2.4 to resolve the inner layer, as mentioned in the
introduction of this chapter) could be dramatically reduced. Obviously, as we
will see, this different approach yields different challenges. The results of this
section are essentially those recently proved by Dunca, John, and Layton [101].

9.2.1 Derivation of the Boundary Commutation Error (BCE)

The starting point of our considerations is the NSE in a bounded domain. In
order to apply a convolution operator, first one has to extend all functions
outside the domain. These functions will fulfill the NSE in a suitable “distri-
butional sense.” Then, the convolution operator can be applied, filtering and
differentiation commute, and the space averaged Navier–Stokes equations are
obtained.

As usual, Ω is a bounded domain in Rd, d = 2, 3, with Lipschitz boundary
∂Ω having the (d−1)-dimensional measure |∂Ω| < ∞. We consider the incom-
pressible NSE (2.1), (2.2) with homogeneous Dirichlet boundary conditions.
We assume that the initial boundary value problem associated with the NSE
has a unique strong solution (u, p) in [0, T ], hence satisfying⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u ∈
[
H2(Ω) ∩ H1

0 (Ω)
]d

if t ∈ [0, T ]

u ∈
[
H1(0, T )

]d

if x ∈ Ω

p ∈ H1(Ω) ∩ L2
0(Ω) if t ∈ (0, T ].

(9.9)

We have to extend now u, p, f , and u0 outside Ω (the first three functions for
all times t). Because of the homogeneous Dirichlet boundary conditions, it is
natural to extend u and u0 by 0; from the physical point of view there is no
particular reason to extend p and f in a different way. Thus, we have

u∗ =

{
u for x ∈ Ω

0 for x �∈ Ω
u∗

0 =

{
u0 for x ∈ Ω

0 for x �∈ Ω

p∗ =

{
p for x ∈ Ω

0 for x �∈ Ω
f∗ =

{
f for x ∈ Ω

0 for x �∈ Ω.

The extended functions satisfy the following:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u∗ ∈

[
H1

0 (�d)
]d

if t ∈ [0, T ]

u∗ ∈
[
H1(0, T )

]d

if x ∈ �d

p∗ ∈ L2
0(�

d) if t ∈ (0, T ].

(9.10)
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From (9.9) and (9.10) it follows that u∗
t , ∇u∗, ∇·u∗, and ∇· (u∗u∗T ) are well

defined for x ∈ �d:

u∗
t =

{
ut if x ∈ Ω
0 otherwise ∇ · (u∗u∗T ) =

{∇ · (uuT ) if x ∈ Ω
0 otherwise

∇u∗ =
{∇u if x ∈ Ω

0 otherwise ∇ · u∗ = 0 if x ∈ Rd.

(9.11)

On the Notion of Distribution

We briefly recall some basic facts about distributions, needed in this section.
For more details we refer the reader to Kolmogorov and Fomı̄n [192]. A refer-
ence text, with rigorous results, but also with many interesting applications
to mathematical physics, is the textbook by Schwartz [273].

We first define (using standard notation) the linear space

D =
{
φ ∈ C∞

0 (�d)
}

,

i.e. the space of infinitely differentiable functions, whose support is contained
in a bounded set. The space D is endowed with the following notion of con-
vergence4: the sequence {φj}j≥1 ⊂ D converges to φ ∈ D if

(a) the support of the functions φj is contained in the same bounded closed
set K, for each j ∈ �;

(b) there is uniform convergence of all the derivatives of φj , toward the cor-
responding derivative of φ, i.e. for each multi-index α = (α1, . . . , αd)

lim
j→+∞

sup
x∈�d

∣∣∣∣ ∂|α|φj

∂xα1
1 . . . ∂xαd

d

− ∂|α|φ
∂xα1

1 . . . ∂xαd

d

∣∣∣∣ = 0.

We can define now the notion of distribution.

Definition 9.10. We say that T is a distribution if T is a linear and contin-
uous functional over the space D.

This means that T associates to each φ ∈ D a real number denoted by

〈T, φ〉,
and the following properties are satisfied:⎧⎪⎨⎪⎩

〈T, φ1 + φ2〉 = 〈T, φ1〉 + 〈T, φ2〉 ∀φ1, φ2 ∈ D;
〈T, λφ〉 = λ〈T, φ〉 ∀λ ∈ �, ∀φ ∈ D;
〈T, φj〉 → 〈T, φ〉 if φj → φ in D.

4 We specify the notion of convergence since the space D is not a Banach space; so
it is not possible to find a norm describing this notion of convergence.
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We now give a couple of simple examples of distributions. The first is the
generalization of the usual concept of function: if f ∈ L1

loc(�
d) (that means

the integral of |f | is bounded if performed over closed bounded sets of �d) we
can associate to it the distribution Tf defined by

〈Tf , φ〉 =
∫
�d

f(x)φ(x) dx.

The other relevant example is the “Dirac delta function” (note that is not
a function but a distribution)

〈δ, φ〉 = φ(0)

that is used to interpret distribution of electric charges, material masses, and
so on.

The notion of “support” of a distribution is also of importance. We say
that a distribution T is vanishing in an open set Ω ⊂ �d if 〈T, φ〉 = 0 for each
function φ ∈ D whose support is contained in Ω. We now define the notion of
derivative of a distribution, that generalizes the usual notion of derivative.

Definition 9.11. The partial derivative ∂T/∂xi of the distribution T is again
a distribution and is defined through the formula〈

∂T

∂xi
, φ

〉
= −

〈
T,

∂φ

∂xi

〉
∀φ ∈ D.

Roughly speaking, this definition uses the integration by parts formula to give
meaning to the derivative of a distribution since in the case of a smooth (say
C1) function it implies that

T∂f/∂xi
=

∂Tf

∂xi
.

Furthermore, since ∂T/∂xi is itself a distribution, it may be derived (in the
sense of distributions) again. Hence distributions possess infinite-order deriva-
tives, defined by〈

∂|α|T
∂xα1

1 . . . ∂xαd

d

, φ

〉
= (−1)|α|

〈
T,

∂|α|φ
∂xα1

1 . . . ∂xαd

d

〉
.

The last point in our summary is the definition of T = T ∗ gδ, the convolution
between a distribution T and a smooth function gδ.

Definition 9.12. Let T be a distribution with compact support which has the
form

〈T, φ〉 = −
∫

Rd

f(x)∂αϕ(x) dx,

where ∂α is the derivative of φ with respect to the multi-index α and f ∈ L1
loc.

Then
T (x) = 〈T, gδ(x − ·)〉 = −

∫
�d

f(y)∂αgδ(x − y) dy. (9.12)
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It turns out that T = T ∗ gδ ∈ C∞(�d). For precise definitions and further
properties of the convolution of a distribution with a function, see for instance
Rudin [266], Chap. 6.

We can now check that all the “starred variables” in this section are well
defined in the sense of distributions, too.

Remark 9.13. With a small abuse of notation, we remove from now on the
star superscript from all variables. Each function we will study in the sequel
is the null extension to �d of the corresponding function previously defined
on Ω.

For instance, we check the second term in (9.11). If ϕ ∈ [D]d and we define
∇ · (uuT ) in the sense of distributions, we obtain

〈∇ · (uuT )(x), ϕ〉 : = −
∫
�d

(uuT )(x) · ∇ϕ(x) dx

= −
∫

Ω

(uuT )(x) · ∇ϕ(x) dx

=
∫

Ω

∇ · (uuT )(x)ϕ(x) dx,

due to the fact that the boundary integral vanishes (u = 0 on ∂Ω).
The terms Re−1�u and ∇p require some care since their definitions in the

sense of distributions are not trivial at all. Let ϕ ∈ [D]d and, as usual, let n
be the outward normal vector on ∂Ω. Then, from the definition of p on �d it
follows that

〈∇p, ϕ〉 : = −
∫
�d

p(x)∇ · ϕ(x) dx = −
∫

Ω

p(x)∇ · ϕ(x) dx

=
∫

Ω

∇p(x) · ϕ(x) dx −
∫

∂Ω

p(s)ϕ(s) · n(s) dS(s),

where dS(s) is the surface (line in 2D) element.
In the same way, one obtains

〈�u, ϕ〉 = 〈∇ · ∇u, ϕ〉 : = −
∫
�d

∇u(x)∇ϕ(x) dx

= −
∫

Ω

∇u(x)∇ϕ(x) dx

=
∫

Ω

�u(x)ϕ(x) dx −
∫

∂Ω

ϕ(s)∇u(s)n(s) dS(s).

Both distributions have compact support.
The extended functions fulfill the following distributional form of the mo-

mentum equation

ut− 1
Re

�u+∇·(uuT )+∇p = f+
∫

∂Ω

(
1

Re
∇u·n−pn

)
(s)ϕ(s) dS(s). (9.13)
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The space-averaged Navier–Stokes equations are now derived by convolv-
ing (9.13) with a filter function gδ(x) ∈ C∞(Rd).

By filtering (9.13) via convolution with gδ, by using the fact that convo-
lution and differentiation commute, and by convolving the extra term on the
right-hand side according to (9.12), we obtain the space-averaged momentum
equation:

ut− 1
Re

�u + ∇ · (uuT ) + ∇p = f

+
∫

∂Ω

gδ(x − s)
[

1
Re

∇u(s)n(s) − p(s)n(s)
]

dS(s) in (0, T )×�d.

(9.14)

Remark 9.14. Very often, the deformation-tensor-formulation of the momen-
tum equation of the NSE

ut − 2
Re

∇ · (∇su) + ∇ · (uuT ) + ∇p = f in (0, T )× Ω

is used as starting point in LES where, as usual, ∇su is the symmetric part of
the gradient. The same considerations as for the gradient formulation of the
momentum equation lead to the following space-averaged deformation-tensor-
formulation:

ut− 2
Re

∇ · (∇su) + ∇ · (uuT ) + ∇p = f

+
∫

∂Ω

g(x − s)
[

2
Re

∇su(s) · n(s) − p(s)n(s)
]

dS(s) in (0, T )×�d.

(9.15)

Thus, the space-averaged NSE arising from the NSE on a bounded domain
possess an extra boundary integral. Omitting this integral results in the so-
called Boundary Commutation Error (BCE). This integral poses a new mod-
eling question since the BCE depends on (u, p) and not on the space-averaged
quantities (u, p).

Remark 9.15. The term
2

Re
∇su · n − pn (9.16)

is the Cauchy stress (or traction) vector. It is naturally closely related to the
vector with the full gradient

1
Re

∇u · n− pn. (9.17)

In general, the Cauchy stress vector does not vanish on the whole bound-
ary. From the regularity hypotheses (9.9) and (9.10) it follows that both
terms in (9.16) belong to

[
H1/2(∂Ω)

]d
. Thus, in particular they belong to
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L2(∂Ω)

]d
. From Galdi [120] Chap. 2, and |∂Ω| < ∞ it follows that the

terms in (9.16) are in [Lq(∂Ω)]d with 1 ≤ q < ∞ if d = 2 and 1 ≤ q ≤ 4 if
d = 3. The Sobolev embeddings imply that:∥∥∥∥ 1

Re
∇u · n− pn

∥∥∥∥
[Lq(∂Ω)]d

≤ C

(
1

Re
‖u‖[H2(Ω)]d + ‖p‖H1(Ω)

)
,

∥∥∥∥ 2
Re

∇su · n− pn
∥∥∥∥

[Lq(∂Ω)]d
≤ C

(
1

Re
‖u‖[H2(Ω)]d + ‖p‖H1(Ω)

)
.

9.2.2 Estimates of the Boundary Commutation Error Term

In this section we give some estimates for the BCE. In particular, we show
that the BCE, belongs to [Lp(�d)]d. We derive a sufficient and necessary
condition for the convergence to zero of the commutation error in the norm
of [Lp(�d)]d, as the filter width δ tends to zero. It turns out that, in general,
this condition will not be satisfied in practice.

In view of Remark 9.15, it is necessary to study terms defined on the whole
space, of the following special form:

F (x) :=
∫

∂Ω

gδ(x − s)ψ(s) dS(s) x ∈ �d, (9.18)

with ψ(s) ∈ Lq(∂Ω), for 1 ≤ q ≤ ∞. We will first show that (9.18) belongs to
any Lebesgue space, if gδ is the Gaussian kernel.

Proposition 9.16. Let ψ(s) ∈ Lq(∂Ω), 1 ≤ q ≤ ∞, and let gδ be defined
by (1.17). Then (9.18) belongs to Lp(�d), for 1 ≤ p ≤ ∞.

Proof. By Hölder’s inequality with r−1 + q−1 = 1, r < ∞, one obtains∣∣∣∣∫
∂Ω

gδ(x − s)ψ(s) dS(s)
∣∣∣∣ ≤ (∫

∂Ω

gr
δ (x − s) dS(s)

)1/r

‖ψ‖Lq(∂Ω)

=

(∫
∂Ω

(
6

δ2π

)rd/2

exp
(
−6r

δ2
‖x− s‖2

2

))1/r

‖ψ‖Lq(∂Ω).

By the triangle inequality and Young’s inequality, it follows that

2‖x− s‖2
2 ≥ ‖x‖2

2 − 2‖s‖2
2 ∀x, s ∈ �d,

which implies

exp
(
−6r‖x − s‖2

2

δ2

)
≤ exp

(
3r

−‖x‖2
2 + 2‖s‖2

2

δ2

)
.
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It follows that∣∣∣∣∫
∂Ω

gδ(x − s)ψ(s) dS(s)
∣∣∣∣

≤
(

6
δ2π

)d/2

‖ψ‖Lq(∂Ω)

[∫
∂Ω

exp
(

6r‖s‖2
2

δ2

)
dS(s)

]1/r

exp
(
−3‖x‖2

2

δ2

)
< ∞,

since ∂Ω is compact and the exponential is a bounded function. This proves
the statement for L∞(�d). The proof for p ∈ [1,∞) is obtained by raising
both sides of the latter equation to the power p, integrating on �d, and using∫

�d

exp
(
−3p‖x‖2

2

δ2

)
dx < ∞.

If q = 1, we have for 1 ≤ p < ∞∫
�d

∣∣∣∣∫
∂Ω

gδ(x − s)ψ(s) dS(s)
∣∣∣∣p dx ≤ ‖ψ‖p

L1(∂Ω)

∫
�d

sup
s∈∂Ω

gp
δ (x − s) dx

= ‖ψ‖p
L1(∂Ω)

∫
�d

gp
δ (d(x, ∂Ω)) dx.

We choose a ball B(0, R) with radius R such that d(x, ∂Ω) > ‖x‖2/2 for all
x �∈ B(0, R). Then, the integral on �d is split into a sum of two integrals.
The first integral is computed on B(0, R). This is finite since the integrand is
a continuous function on B(0, R). The second integral on �d \B(0, R) is also
finite because∫

�d\B(0,R)

gp
δ (d(x, ∂Ω)) dx ≤

∫
�d

gp
δ

(‖x||2
2

)
dx,

due to the integrability of the Gaussian filter. This concludes the proof for
p < ∞. For p = ∞, we have

sup
x∈�d

∣∣∣∣∫
∂Ω

gδ(x − s)ψ(s) dS(s)
∣∣∣∣ ≤ sup

x∈�d

sup
s∈∂Ω

gδ(x − s)‖ψ‖L1(∂Ω)

≤ gδ(0)‖ψ‖L1(∂Ω) < ∞.

��
In the next proposition, we study the behavior of the Lp(�d)-norm of the

function F defined in (9.18), as δ → 0.

Proposition 9.17. Let ψ(s) ∈ Lp(∂Ω), 1 ≤ p ≤ ∞. A necessary and suffi-
cient condition for

lim
δ→0

∥∥∥∥∫
∂Ω

gδ(x − s)ψ(s) dS(s)
∥∥∥∥

Lp(�d)

= 0 ∀ p ∈ [1,∞], (9.19)

is that ψ(s) vanishes almost everywhere on ∂Ω.
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Proof. It is obvious that the condition is sufficient.
Conversely, let (9.19) hold. From Hölder’s inequality, we obtain for an

arbitrary function ϕ ∈ D

lim
δ→0

∣∣∣∣∫
�d

ϕ(x)
(∫

∂Ω

gδ(x − s)ψ(s) dS(s)
)

dx
∣∣∣∣

≤ lim
δ→0

‖ϕ‖Lq(�d)

∥∥∥∥∫
∂Ω

gδ(x − s)ψ(s) dS(s)
∥∥∥∥

Lp(�d)

= 0,

(9.20)

where p−1 + q−1 = 1. By Fubini’s theorem and the symmetry of the Gaussian
filter, we have

lim
δ→0

∫
�d

ϕ(x)
(∫

∂Ω

gδ(x − s)ψ(s) dS(s)
)

dx

= lim
δ→0

∫
∂Ω

ψ(s)
(∫
�d

gδ(x − s)ϕ(x) dx
)

dS(s)

=
∫

∂Ω

ψ(s) lim
δ→0

(gδ ∗ ϕ)(s) dS(s).

Since gδ ∗ ϕ converges to ϕ as δ → 0 (see Proposition 2.32) it follows by the
trace theorem that gδ ∗ ϕ → ϕ as δ → 0 in Lp(∂Ω). Thus, from (9.20) it
follows that ∣∣∣∣∫

∂Ω

ψ(s)ϕ(s) dS(s)
∣∣∣∣ = 0 ∀ϕ ∈ C∞

0 (�d).

This is true if and only if ψ(s) vanishes almost everywhere on ∂Ω. ��
Remark 9.18. Proposition 9.17 implies that the commutation error terms
in (9.14) and (9.15) vanish in [Lp(�d)]d if and only if the Cauchy stress vec-
tors (9.16) vanish almost everywhere. However, this property is in general not
satisfied, since it implies that there is no interaction between the fluid
and the boundary.

We will now bound the Lp(�)-norm of (9.18) in terms of δ.

Proposition 9.19. Let Ω be a bounded domain in �d with Lipschitz boundary
∂Ω, ψ ∈ Lp(∂Ω) for some p > 1, and p−1+q−1 = 1. Then, for every α ∈ (0, 1)
and k ∈ (0,∞) there exist constants C > 0 and ε > 0 such that∫

�d

∣∣∣∣∫
∂Ω

gδ(x − s)ψ(s) dS(s)
∣∣∣∣k dx ≤ Cδ1+k( (d−1)α

q −d)‖ψ‖k
Lp(∂Ω)

for every δ ∈ (0, ε), where C and ε depend on α, k, and |∂Ω|.
The proof of this proposition is technical and relies on some geometrical prop-
erties of the domain, together with a complicated construction of an appro-
priate mesh on ∂Ω on which calculations are performed. We have only stated
the final result and we refer the reader to [101, 175] for more details.
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9.2.3 Error Estimates for a Weak Form
of the Boundary Commutation Error Term

In this section, we consider a weak form of the boundary commutation er-
ror term, i.e. the BCE term (9.18) is multiplied by a test function ϕ and
integrated on �d. This is very interesting since it can be found in the weak
formulation of the space-averaged NSE and in the numerical studies using
a discretization based on a variational formulation. In addition, if we consider
a weak formulation, we can hope to have better convergence, as δ → 0, for
the BCE.

The following proposition shows how the weak form converges to zero
as δ tends to zero with some estimates on its rate. For d = 2, Proposi-
tion 9.21 shows that the convergence is almost of order one if ψ(s) is suf-
ficiently smooth.

Proposition 9.20. Let v ∈ H1(�d) such that v|Ω ∈ H1
0 (Ω) ∩ H2(Ω) and

v(x) = 0 if x /∈ Ω and let ψ ∈ Lp(∂Ω), 1 ≤ p ≤ ∞. Then

lim
δ→0

∫
�d

v(x)
(∫

∂Ω

gδ(x − s)ψ(s) dS(s)
)

dx = 0,

where v(x) = (gδ ∗ v)(x).

Proof. By Fubini’s theorem and the symmetry of gδ, we obtain

lim
δ→0

∫
�d

v(x)
(∫

∂Ω

gδ(x − s)ψ(s) dS(s)
)

dx

= lim
δ→0

∫
∂Ω

ψ(s)
(∫
�d

gδ(s− x)v(x) dx

)
dS(s).

By a Sobolev embedding theorem it follows that v ∈ L∞(�d). In addition,
by using twice the results of convergence of the Gaussian filter for δ → 0 and
the fact that v is uniformly continuous on ∂Ω (see Proposition 2.32) it follows
that

lim
δ→0

∫
�d

gδ(s− x)v(x) dx = v(s).

By using the fact that v vanishes on ∂Ω, it follows that

lim
δ→0

∫
�d

v(x)
(∫

∂Ω

gδ(x − s)ψ(s) ds
)

dx =
∫

∂Ω

ψ(s)v(s) ds = 0.

��
With the result of Proposition 9.19, it is possible (again we only state the
result, without proofs) to study the order of convergence with respect to δ of
the weak form of the BCE term.
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Proposition 9.21. Let v and ψ be defined as in Proposition 9.20 and let the
assumption of Proposition 9.19 be fulfilled. Then, there exists an ε > 0 such
that for δ ∈ (0, ε),∫

�d

∣∣∣∣v(x)
∫

∂Ω

gδ(x − s)ψ(s) dS(s)
∣∣∣∣k dx

≤ Cδ1+(−d+
(d−1)α

q +βα)k‖ψ‖k
Lp(∂Ω)‖v‖k

H2(Ω),

where k ∈ [1,∞), β ∈ (0, 1) if d = 2 and β = 1/2 if d = 3, p−1 + q−1 = 1,
p > 1, and C and ε depend on α, k, and |∂Ω|.
An easy consequence of Proposition 9.21 is the following:

Corollary 9.22. Let the assumptions of Proposition 9.21 be fulfilled. Then,
for the weak form of the BCE term, the following inequality holds:∣∣∣∣∫
�d

v(x)
∫

∂Ω

gδ(x − s)ψ(s) dS(s)
∣∣∣∣ dx ≤ Cδ1−d+ (d−1)α

q +βα‖ψ‖Lp(∂Ω)‖v‖H2(Ω).

(9.21)

Remark 9.23. Let d = 2 and p < ∞ arbitrarily large. Then q is arbitrarily close
to one. Choosing α and β also arbitrarily close to one leads to the following
power of δ in (9.21):

1 + (−2 + (1 − ε1) + (1 − ε2)) = 1 − (ε1 + ε2) = 1 − ε3

for arbitrarily small ε1, ε2, ε3 > 0. In this case, the convergence is almost of
first order.

The result of Proposition 9.21 does not provide an order of convergence
for d = 3. Following Remark 9.15, let us choose p = 4, i.e. q = 4/3. Then, the
power of δ in (9.21) becomes 2(α − 1), which is negative for α < 1.

9.2.4 Numerical Approximation
of the Boundary Commutation Error

Recently, there have been some interesting developments in the numerical
approximation of the boundary commutation error.

Das and Moser proposed in [83] the following approach to approximate
the boundary commutation error Aδ(σ): to estimate the shear stresses, the
authors included in the computational domain a buffer region outside the
wall. In this region, the velocities are set to zero, and the wall stresses are
determined to minimize the kinetic energy in the buffer region. The resulting
system can be thought of as an LES version of embedded boundary tech-
niques. The approach has been tested on several model problems, including
the heat equation, Burgers equation, and turbulent channel flow, with good
results.
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A different approach has recently been proposed by Borggaard and Ili-
escu [39]. The authors used an approximate deconvolution (AD) approach to
approximate the boundary commutation error Aδ(σ). The AD was presented
at length in Chap. 7. It is based on the following idea: by using the mathe-
matical properties of the particular spatial filter gδ and the numerical approx-
imation of u, one can obtain an approximation of (some of) the subfilter-scale
information contained in u − u. AD was combined with physical insight and
was successfully used in challenging test problems, such as compressible flows
and shock-turbulent-boundary-layer interaction [290, 3].

Thus, AD appears as a natural approach in developing NWMs. The appli-
cations that would probably benefit most from this approach would be those
in which the boundary conditions are time dependent (such as in a flow control
setting).

In [39], the authors modeled the commutation error Aδ(σ) using an AD
approach. As a first step, they illustrated their Approximate Deconvolution
Boundary Conditions (ADBC) algorithm for the heat equation. This linear
problem was chosen to decouple the boundary treatment from the closure
problem. The numerical tests indicated that the commutation error should be
included in the numerical model. The ADBC algorithm yielded appropriate
numerical approximations for the boundary commutation error.

These first tests were encouraging. Obviously, the algorithm should be
tested on realistic turbulent flows (at the time of writing, the ADBC algorithm
is being tested on channel flows with time-dependent boundary conditions).

9.3 Conclusions

The twin problems of correctly adapting a filter radius near the wall and of
modeling the boundary commutation error when filtering through a wall are
central problems in the traditional approach to LES. At the moment, these
problems are complex and technically intricate – a clear sign that the right
approach has not yet been found.

In this chapter we tried to give a general presentation of the accomplish-
ments and, more importantly, the critical challenges in filtering on bounded
domains. We also tried to introduce the necessary mathematical background
for an inherently technical topic.

Admittedly, this chapter ends with more open questions (and thus, re-
search opportunities for fresh minds!) than answers. Much more remains to
be done, both at a mathematical and an algorithmic level. The potential pay-
off for any development could be, however, significant. To understand this, it
is sufficient, for example, to consider the scaling argument presented at the
beginning of this chapter, which implied that a brute force approach to simu-
lating the boundary layers has prohibitive computational cost for many flows
of practical interest. Considering alternative approaches appears the only rea-
sonable path.
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We end this final note by mentioning two interesting attempts to finesse
the boundary commutation error question: defining averages by projection in
Hughes’ Variational Multiscale Method [160, 161, 162] and defining averages
by differential filters [127, 126] (both treated in other chapters).
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Near Wall Models in LES

10.1 Introduction

As we saw in the previous chapter, one basic problem in LES is turbulence
driven by interaction of a flow with a wall. Mathematically, this is the problem
of specifying boundary conditions for flow averages. Flow averages (with con-
stant averaging radius δ) are inherently nonlocal : they depend on the behavior
of the unknown, underlying turbulent flow near the boundary. On the other
hand, to be guided by the mathematical theory of the equations of fluid mo-
tion and seek boundary conditions that have hope of leading to a well-posed
problem, those boundary conditions should be local.

One key seems to be the work on the commutation error (presented in the
previous chapter), which accounts for a significant part of the nonlocal effects
near the walls. Thus, a reliable model for the commutation error appears to
be an essential ingredient in the development of appropriate local boundary
conditions for the flow averages.

At this point, some comments are necessary. In LES, the question of find-
ing boundary conditions when using a constant averaging radius δ is known
as Near Wall Modeling and a boundary condition is known as Near Wall
Model (NWM). This is related to the extensive literature in Conventional
Turbulence Modeling (CTM) on “wall-laws.” CTM seeks to approximate long
time averages of flow quantities and, conveniently for CTM, there is a lot
of experimental and asymptotic information available about time averaged
turbulent boundary layers. One common approach in CTM is to place an
artificial boundary inside the flow domain and outside the boundary layers.
A boundary condition is given for the CTM on this artificial boundary by
a Dirichlet condition for the stresses: they are required to match the stress at
the edge of the layer given by, e.g. a log-law of the wall profile.

There are some interesting differences between CTM and the problem of
near wall modeling in LES. First, with constant averaging radius, there is no
structure in u smaller than O(δ). Thus, there is no need to try to guess the
edge of any layer and construct artificial boundaries inside Ω. Understandably,
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early LES studies used the extensive experience in CTM and tried NWM
with the same approach as wall laws in CTM. Nevertheless, it seems clear
now that in NWM applied to LES the boundary condition can (and should) be
imposed at the physical boundary. The second distinction is that LES describes
inherently dynamic phenomena, so imposing a condition that u should match
some equilibrium profile cannot be correct. At this point, one challenge in LES
is how to use the extensive information on time averaged turbulent boundary
layers to generate NWMs that allow time fluctuating solution behavior near
the wall. We feel that the solution outlined in this chapter is a step along the
correct path for this problem.

The last issue is how to reflect the fact that u is inherently nonlocal near
the boundary. As we stated earlier, we believe that the right approach is
to separate the issue of nonlocality, which we believe is due predominantly
to the commutation error term (Chap. 9), from the question of appropriate,
well-posed boundary conditions, and then to study each carefully and combine
their solutions.

10.2 Wall Laws in Conventional Turbulence Modeling

In this section, we present some of the wall laws used in devising physically
reasonable boundary conditions in CTM, even if they have been used also in
LES. We will focus mainly on the mathematical properties of this topic, and
we refer the reader to Cousteix [79] and to Chap. 9 in Sagaut [267] for a more
detailed physical statement of the problem.

A classical approach, introduced for the k−ε model, consists in eliminating
part of the boundary layer; see Launder and Spalding [200]. The boundary
that is considered is not the real boundary ∂Ω, but an artificial one ∂Ω1, lying
inside the volume of the flow. If the boundary is smooth, we can impose the
following boundary condition:⎧⎪⎪⎪⎨⎪⎪⎪⎩

u · n = φ(x),

n · σ(u, p) · τ i +
u2

τ

|u|u · τ i = 0, i = 1, . . . , d − 1,

for (x, t) ∈ ∂Ω1×[0, T ].

In the above formula τ i is an orthonormal set of tangent vectors, while σ
is the stress tensor1. In particular, in the Smagorinsky model (this is the
one studied with the above artificial boundary conditions by Parés [249]) the
turbulent stress tensor is given by

σ(u, p) = −p � + (ν + νT )∇su,

where ν is the usual kinematic viscosity, while νT = νT (δ,∇su) is the tur-
bulent viscosity. The quantity uτ appearing in the formula is the so-called
1 In this section, and just in this one, we use the dimensional form of the equations.
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wall shear velocity (or skin friction velocity). It has the dimensions of length
divided by time and acts as a characteristic velocity for the turbulent flow.
The reader can find a detailed presentation of the formulas involving uτ in
Chap. 12, p. 299. For more details, the reader is referred to Sects. 42–44
of Landau and Lifshitz [199], where there is an overview of results obtained
mainly by von Kárman and Prandtl; see also Sect. 7.1.3 in Pope [258].

The particular case in which u2
τ/|u| is a nonnegative constant corresponds

to a rough surface. An analysis, together with a numerical implementation of
this condition can be found in John [174, 175], for some classes of LES models.

Generally, the mean velocity profile of the flow in a boundary layer may
be approximated by

u+ = f(y+), (10.1)

where f is the so-called law-of-the-wall. In (10.1),

u+ =
〈u〉
uτ

and y+ =
uτ y

ν
,

where y is the distance from the wall and a + superscript denotes the quantities
measured in wall-units. For more details on the significance and importance of
measuring flow variables in wall-units, the reader is again referred to Chap. 12
and Sect. 7.1 in Pope [258]. Many different expressions for f may be found in
the literature, however all of them are monotonic, and some are linear near 0
(in the so-called viscous sublayer), and with logarithmic growth at infinity.
We report, see [271], two of them:

(a) Prandtl–Taylor law

f(y+) =

⎧⎨⎩
y+ if 0 ≤ y+ ≤ y+

0

2.5 log(y+) + 5.5 if y+
0 < y+,

where y+
0 is chosen such that f be continuous.

(b) Reichardt law

f(y+) = 2.5 log(1 + 0.4y+) + 7.8
(

1 − e−y+/11 − y+

11
e−y+/3

)
,

which is smoother than the Prandtl–Taylor law and is used if higher reg-
ularity of the solution is desired.

Remark 10.1. The above laws have been used successfully in the analytical
treatment of the LES equations, see for instance Parés [249], even if the sta-
tistical description of the canonical boundary layer is slightly different. In the
case of the canonical boundary layer, there are three layers in the inner region
(the region whose distance from the boundary is less than or equal to 0.2 δ),
where dynamics is controlled by viscous effects: in the viscous sublayer (the
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region such that y+ ≤ 5) the mean velocity is linear. This means that the
mean velocity is distributed according to the same law as the true velocity
would be for a laminar flow, under the same conditions. In the buffer layer
(5 < y+ ≤ 30) and in the logarithmic inertial layer (30 < y+) the mean av-
erage velocity is controlled by log-like laws. On the contrary, the outer region
(i.e. with distance greater than 0.2 δ) is controlled by turbulence.

In the inner region, the correct length scale needed to describe the dy-
namics is the viscous length lτ = ν/uτ . In the outer region the characteristic
length is δ and the mean velocity is logarithmic in the logarithmic inertial
region, while it is controlled by a logarithm added to a linear function in the
wake region.

To implement the boundary condition related to the Prandlt law (or to the
Reichardt one) we have to consider then the no-penetration condition u·n = 0
together with

n · σ(u, p) · τ i + G(u) · τ i = 0, with G(u) =

⎧⎪⎪⎨⎪⎪⎩
h(|u|)
|u| u if |u| > 0

0 if |u| = 0,

where h : �+ → � is the function defined by h(|u|) = u2
τ , and uτ is calculated

by inverting the law-of-the-wall

|u| = uτ f
(uτ y

ν

)
.

Since the real function s �→ s f(s δ/ν) is strictly increasing and continuous, h
is strictly increasing and continuous too. Roughly speaking, the function G(s)
is nonnegative and behaves as o(s2), for |s| → ∞. This is the basic property
that such a function should satisfy to produce a boundary value problem
that can be treated with the usual monotone operators technique, see again
Parés [249].

10.3 Current Ideas in Near Wall Modeling for LES

Near Wall Resolution, in which the averaging radius δ is reduced to 0 near
the boundary, besides the well-documented mathematical challenges, involves
high computational cost which makes it impractical for most applications of
interest. Thus, reflecting the fundamental importance of the topic, there have
been correspondingly many NWMs tested in LES. The reader is referred to
Sagaut [267], Piomelli and Balaras [253], and Werner and Wengle [312] for
detailed surveys of the NWM. Next, we will only sketch the main directions
in the development of NWM.

The first paper in LES by Deardorff [87] also used the first NWM model,
while Schumann [272] was the first to impose a nonlocal condition on the wall
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shear stress. He assumed that the stream-wise (span-wise) stress is in phase
with the stream-wise (span-wise) velocity at the first grid point away from
the wall. The constant of proportionality was obtained from the logarithmic
law of the wall.

Grötzbach [141] and Piomelli et al. [255] proposed improvements to the
basic idea of Schumann, in which a simple algebraic relationship is assumed
between the wall stress and the velocity at the first grid point away from the
wall. Such NWMs are nonlocal in nature and thus difficult to study as bound-
ary conditions for an LES model. Alternately, they can be viewed as involving
a normal derivative of the wall stress – again a “difficult” condition since this
imposes boundary conditions of higher order than the equations. (Thus, there
are many interesting opportunities for mathematical understanding of existing
NWMs.)

A different approach, similar in spirit to the domain decomposition tech-
niques, has led to the two-layer model. In this approach, the three-dimensional
boundary layer equations are integrated on an embedded near-wall grid to es-
timate the wall stresses, see Cabot [48, 49]. While incorporating more physics
than the previous approach, the two-layer model is still computationally ex-
pensive. Furthermore, it does not produce better results than simpler algebraic
wall models for coarse LES at high Reynolds numbers, see Nicoud et al. [246].

Bagwell et al. [11, 10], developed a different approach in which linear
stochastic estimation is used to find the least squares estimate of the wall
stresses, given the LES velocities on some plane or planes parallel to the wall.
Bagwell used the resulting model in channel flow simulations at Reτ = 180,
the Reynolds number based on uτ (see Chap. 12, p. 298, for the definition of
Reτ .) He also attempted to rescale the model for the Reτ = 640 case, but the
results were not encouraging. While this approach does not rely on the un-
derlying physics, the two-point correlation tensor of the flow must be known
to form the linear stochastic coefficients.

In experimental tests of Marusic et al. [233], it was noted that these (and
other) commonly used NWMs degrade seriously in presence of complex ge-
ometries and at realistic, high Reynolds numbers. In [233] the authors con-
sidered a turbulent boundary layer at Reτ = 1350 and found overall signifi-
cant discrepancies in all three models investigated: the Schumann model with
the Grötzbach modification (SG) [141], the shifted SG model of Piomelli et
al. [255], and the ejection model [255].

One recurring theme in these attempts is the use of nonlocal boundary con-
ditions to incorporate solution behavior in a strip near ∂Ω. From the results
in Chap. 9, it appears that one essential way to incorporate it is via a discrete
model for the boundary commutation error term Aδ(σ) (see Sect. 9.2.1) as an
extra forcing function in the strip along ∂Ω.

If a discrete model of Aδ(σ) is used, the problem of NWM modeling simpli-
fies considerably. We can seek local boundary conditions for the fluid averages
and thus be guided by a large body of mathematical and physical studies
of well-posed boundary conditions for flow problems. With that said, how-
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Fig. 10.1. Averaging the velocity at the boundary does not yield homogeneous
Dirichlet conditions

ever, the problem remains difficult because the behavior of u on ∂Ω depends
on the behavior u in a δ-neighborhood of ∂Ω, as illustrated in Fig. 10.1.
Recently, there have been some interesting developments along these lines.
Recognizing the importance of the commutation error Aδ(σ), Borggaard and
Iliescu [39] proposed a numerical implementation of the commutation error
by using an Approximate Deconvolution (AD) approach. The AD was pre-
sented at length in Chap. 7, and can be summarized as follows: by using the
mathematical properties of the particular spatial filter gδ and the numeri-
cal approximation of u, one can obtain an approximation of (some of) the
subfilter-scale information contained in u − u. AD was combined with phys-
ical insight and was successfully used in developing improved models for the
stress tensor τ , yielding the so-called mixed models where the subfilter-scale
tensor – due to the loss of information in the filtering process – was modeled
through AD, while the subgrid-scale tensor – due to the loss of information
in the discretization process – was modeled by using physical insight (eddy
viscosity).

It is only natural to pursue the same approach in developing NWMs. The
applications that would probably benefit most from this approach would be
those in which (i) the boundary layer theory is not valid and physical insight
is scarce (such as in complex geometries), and (ii) the boundary conditions
are time dependent (such as in a flow control setting).

In [39], the authors modeled both the commutation error Aδ(σ) and the
boundary conditions for u using an AD approach. As a first step, they il-
lustrated their Approximate Deconvolution Boundary Conditions (ADBC) al-
gorithm for the heat equation. This linear problem was chosen to decouple
the boundary treatment from the closure problem. The first conclusion of
these tests was that the commutation error should be included in the numer-
ical model: without it, the error increased by three orders of magnitude. The
numerical tests also indicated that the ADBC algorithm yielded appropri-
ate numerical approximations for the commutation error and the boundary
conditions for u.
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These first tests were encouraging. Obviously, the algorithm should be
tested on realistic turbulent flows (at the time of writing this book, the ADBC
algorithm is being tested on channel flows with time-dependent boundary
conditions.)

Das and Moser recently proposed in [83] a different approach to account
for the commutation error Aδ(σ): to estimate the shear stresses, the authors
included in the computational domain a buffer region outside the wall. In this
region, the velocities are set to zero, and the wall stresses are determined to
minimize the kinetic energy in the buffer region. The resulting system can be
thought of as an LES version of embedded boundary techniques. The approach
has been tested on several model problems, including the heat equation, Burg-
ers equation, and turbulent channel flow.

10.4 New Perspectives in Near Wall Models

Our intuition of large structures touching a wall is that they do not penetrate
the wall and slide along the wall losing energy as they slide, e.g. Navier [244]
and Galdi and Layton [122]. This is in accord with Fig. 10.1 (in which u·n ∼= 0
while u·τ i �= 0) and also with Maxwell’s derivation [234] of slip with resistance
boundary conditions for gases from the kinetic theory of gases [178]. Thus, as
a first approximation of a good NWM, consider the local, well-posed boundary
condition for u:

u · n = 0 and β u · τ i + n · σ(u, p) · τ i = 0, on ∂Ω. (10.2)

The above boundary conditions give rise to a well-posed boundary value prob-
lem and this can be seen at least from the point of view of basic energy
estimates. We can see this fact at least in the case of the stress tensor corre-
sponding to the NSE, i.e., σ(w, q) = 2Re−1∇sw − q �. Multiplying by w the
term −∇ · σ(w, q) and integrating by parts, we get (with the convention of
summation over repeated indices)∫

Ω

−∇ ·
( 2

Re
∇sw − q �

)
w dx

= −
∫

∂Ω

n ·
( 2

Re
∇sw − q �

)
w dσ +

2
Re

∫
Ω

|∇sw|2 dx

= −
∫

∂Γ

n ·
( 2

Re
∇sw − q �

)
[(w · n)n + (w · τ i)τ i] dσ +

2
Re

∫
Ω

|∇sw|2 dx

and, supposing the velocity w to satisfy both boundary conditions in (10.2),

=
∫

Γ

β |wτ |2 dσ +
2

Re

∫
Ω

|∇sw|2 dx,

where wτ denotes2 the “tangential part” of the velocity. The boundary inte-
gral is then nonnegative, provided that β ≥ 0. This can be used to employ
2 This wτ = w − (w · n)n should not be confused with the wall shear velocity.
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the usual variational techniques needed to prove existence and H2 regular-
ity of weak solutions (see Beirão da Veiga [20]), at least in the linear case.
A generalized Stokes problem has been also studied in [20]. For more details
on the physics of this type of boundary conditions for the NSE see the won-
derful introduction to this topic in Sect. 64 of Serrin [274] and also the recent
analytical results in Fujita [118], Consiglieri [71], and references therein.

Herein the friction parameter β should satisfy the two consistency condi-
tions

β → ∞ as δ → 0 for Re fixed,
i.e. (10.2) becomes the no-slip condition;

β → 0 as Re → ∞ for δ fixed,
i.e. (10.2) becomes the free slip condition.

Remark 10.2. It is clear that the energy estimate that can be derived from
the above calculations remains essentially the same for all EV methods. In
addition, we recall that similar boundary conditions have been studied for the
Stokes problem by Solonnikov and Ščadilov [278] and Beirão da Veiga [20].
In fact, they studied the well-posedness of a more general version of (10.2) in
which the tangential part of the velocity u− (u ·n)n is supposed proportional
to n · σ − (n · σ · n)n, that is the tangential part of the normal stress tensor,
or the tangential part of the Cauchy stress vector.

As we have seen, the 1879 work of Maxwell gives also insight into the correct
scaling of β. In LES the microlength scale is δ. Thus, the natural interpretation
of Maxwell’s calculation is the scaling

β ∼ L

Re δ
.

Since u depends on u near ∂Ω, so must β and supposing β to be a constant
may be restrictive. Thus, the best available tools to determine β analytically
come from boundary layer theory. Maxwell also accompanied his analysis with
the disclaimer

It is almost certain that the stratum of gas next to a solid body is in a very

different state from the rest of the gas (J.C. Maxwell, 1879).

An analytic formula for β can be calculated (within the limits of accuracy
and validity of boundary layer theory) by the following procedure, see [122,
269, 178]. Let ũ denote a boundary layer approximation of u [271, 16]. Then,
starting from the two-dimensional case, gδ ∗ ũ and gδ ∗ (∇sũ) can be explicitly
calculated (by using a symbolic mathematics program, for example, if the
modeler is not a maestro in special functions) and β calculated via

β
.=

−n · (gδ ∗ ∇sũ) · τ
(gδ ∗ ũ) · τ

∣∣∣∣
∂Ω

.



10.4 New Perspectives in Near Wall Models 261

NWMs of the form (10.2) have the advantage of being in accord with the
physics of fluids near walls. They also have the advantage of allowing time
fluctuating behavior in u on the wall. Indeed, any time fluctuation in the wall
stress in (10.2) results in a fluctuation in the wall slip velocity (via (10.2))
and vice versa. Furthermore, the problem of near wall modeling reduces now
to determining the effective friction coefficient β = β(δ, Re, . . . ). Since the
essence of the formulation (10.2) allows time fluctuating behavior on the wall,
the extensive information on time-averaged turbulent boundary layers can be
used to get insight into β, without constraining the near wall motion to be
quasi-static.

10.4.1 The 1/7th Power Law in 3D

Consider the case of a turbulent boundary layer. We recall that there are
various theories for turbulent boundary layers, e.g. Barenblatt and Chorin [16],
Schlichting [271], and Pope [258]. Although the following calculation can be
done for other descriptions, we perform it herein for power law layers (which
is in accord with current views on the subject [16]).

Consider the flat plane {(x, y, z) : y = 0} ⊂ �3. We say that the veloc-
ity u = (u, v, w) obeys the 1/7th power law, see Schlichting [271], Sect. 21,
provided the time (or ensemble) average of the velocity is given by

u =

⎧⎨⎩U∞

(
y

η

)1/7

for 0 ≤ y ≤ η,

U∞ for η < y,

v = w = 0 for 0 ≤ y,

where the boundary layer thickness η = η(x) is given by (21.8) in [271],

η(x) = 0.37x (U∞ xRe)−1/5
,

and U∞ is the free stream velocity.

Remark 10.3. This power law formula is only valid away from the very thin
region near the wall called the viscous sublayer, in which a different asymp-
totic profile holds. Using it at the wall in a pointwise sense is incorrect; it is
easy to see that without the viscous sublayer correction, the power law for-
mula predicts infinite stresses at the wall. This section presents a first step
in the derivation of near wall models. In this first step, we shall calculate the
time average of the average stress in an O(δ) radius near the wall and ignore
the viscous sublayer in the calculation to simplify it significantly. (Thus, in-
corporating the viscous sublayer’s effects into β(·) and testing the difference
with and without them accounted for is an important open problem!) At this
point, we conjecture that the influence of these on the computed slip velocity
w · τ is small but if it is used to predict wall stresses, the effect of the (herein
ignored) viscous sublayer effects can be very large.
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We consider the model situation of a reference plate of nondimensional length
one. Let Ω ⊂ �3 be the half space

Ω = {(x, y, z) ∈ �3 : y > 0}

and ∂Ω the flat plane {y = 0}. In order to handle this situation, we have
to eliminate the x-dependence in η by averaging in the x-direction. Since
the problem is nondimensional, the x-length is thus one. Define an averaged
boundary layer thickness by

η =
∫ 1

0

η(x) dx =
185
900

U∞Re−1/5 = cηRe−1/5, (10.3)

and, by direct calculation, the x-averaged velocity obeys the following law:

u =

⎧⎨⎩U∞

(
y

η

)1/7

for 0 ≤ y ≤ η,

U∞ for η < y,

v = w = 0 for 0 ≤ y.

Let n = (0,−1, 0) be the outward pointing normal vector with respect to Ω
on {y = 0} and τ 1 = (1, 0, 0), τ 2 = (0, 0, 1) be an orthonormal system of tan-
gential vectors. All velocity components are extended by zero outside Ω. We

Fig. 10.2. 1/7th power law boundary layer, U∞ = 1, η = 1
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have obviously v = w = 0 and the slip-with-friction boundary condition (10.2)
thus simplifies to

β(δ, Re)u +
1

Re

∂u

∂y
= 0 on {y = 0}.

Thus,

β(δ, Re) =
1

Re

∂u

∂y
(x, 0)

u(x, 0)
. (10.4)

In the case of a filter gδ given by the usual Gauss kernel, we obtain, by using
explicit formulas involving Gaussian integrals,

u(x, 0, z) = (gδ ∗ u)(x, 0, z)

= U∞
( γ

δ2π

)3/2

×
[∫ η

0

(
y′

η

)1/7

exp
(
− γ

δ2
(y′)2

)
dy′

∫ ∞

−∞
exp

(
− γ

δ2
(x′)2

)
dx′

×
∫ ∞

−∞
exp

(
− γ

δ2
(z′)2

)
dz′ +

∫ ∞

η

exp
(
− γ

δ2
(y′)2

)
dy′

×
∫ ∞

−∞
exp

(
− γ

δ2
(x′)2

)
dx′

∫ ∞

−∞
exp

(
− γ

δ2
(z′)2

)
dz′

]

=
U∞
2

{(
1
π

)1/2 (
δ√
γ η

)1/7
[
Γ

(
4
7

)
− Γ

(
4
7
,

(√
γ η

δ

)2
)]

+
[
1 − erf

(√
γ η

δ

)]}
,

where Γ (z) is the usual Gamma function

Γ (z) =
∫ ∞

0

tz−1exp(−t) dt,

while Γ (z, y) denotes the incomplete Gamma function (see Abramowitz and
Stegun [1]) defined by

Γ (z, y) = Γ (z) −
∫ y

0

tz−1exp(−t) dt.

To compute the numerator in (10.4), first we note that differentiation and con-
volution commute because functions have been extended off the flow domain
so as to retain one weak L2-derivative, i.e.

∂u

∂y
= gδ ∗ ∂u

∂y
.
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A straightforward computation (using a symbolic mathematics package) gives

∂u

∂y
(x, 0, z) = gδ ∗ ∂u

∂y
(x, 0, z)

= U∞
( γ

δ2π

)3/2

×
[∫ η

0

1
7

(
1
η

)1/7

(y′)−6/7 exp
(
− γ

δ2
(y′)2

)
dy′

∫ ∞

−∞
exp

(
− γ

δ2
(x′)2

)
dx′

×
∫ ∞

−∞
exp

(
− γ

δ2
(z′)2

)
dz′

]

=
U∞
14

( γ

δ2π

)1/2
(

δ√
γ η

)1/7
[
Γ

(
1
14

)
− Γ

(
1
14

,

(√
γ η

δ

)2
)]

.

The friction coefficient β(δ, Re) given in (10.4) can now be computed by using
the above expressions for u(x, 0, z) and ∂yu(x, 0, z):

β(δ, Re) (10.5)

=

γ1/2(7δ Re)−1

[
Γ

(
1
14

)
− Γ

(
1
14

,

(√
γ

η

δ

)2
)]

[
Γ

(
4
7

)
− Γ

(
4
7
,

(√
γ

η

δ

)2
)]

+ π1/2

(√
γ η

δ

)1/7 [
1 − erf

(√
γ η

δ

)] .

Remark 10.4. Considering the 1/7th power law in 2D under the same geo-
metric situation as in Sect. 10.4.2 gives the same results as in 3D, i.e. u(x, 0)
turns out to be equal to u(x, 0, z), while ∂yu(x, 0) is equal to ∂yu(x, 0, z).

From John, Layton, and Sahin [178] we have the following proposition:

Proposition 10.5. Let β(δ, Re) be given as in (10.5). We have the following
asymptotic results: if Re is constant, then

lim
δ→0

β (δ, Re) = ∞, lim
δ→0

δ β(δ, Re) =
√

γ

7Re

Γ
(

1
14

)
Γ
(

4
7

) . (10.6)

If δ is constant, then

lim
Re→∞

β(δ, Re) = 0, lim
Re→∞

Re β(δ, Re) =
2
√

γ

δ
√

π
. (10.7)

Proof. From the definition of the Gamma functions it follows that

lim
x→0

(Γ (z) − Γ (z, x)) = lim
x→0

∫ x

0

exp(−t)tz−1 dt = 0, (10.8)

lim
x→∞ (Γ (z) − Γ (z, x)) = lim

x→∞

∫ x

0

exp(−t)tz−1 dt = Γ (z). (10.9)
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Fig. 10.3. 1/7th power law boundary layer : top – behavior of β(δ, Re) with respect
to δ for constant Re(= 1), η(= 1); bottom – behavior of β(δ, Re) with respect of Re
for constant δ(= 1); (γ = 6)

Let Re be fixed and consider the numerator in the last factor of (10.5). The
application of (10.9) proves that the numerator tends to Γ (1/14) as δ → 0
and the first term of the denominator tends to Γ (4/7). By applying three
times the rule of (Johann) Bernoulli–de L’Hôpital, we obtain

lim
x→0

(
1
x

)1/7 [
1 − erf

( z

x

)]
= 0, z > 0.
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Thus, the second term in the denominator tends to zero and hence the last
factor in (10.5) tends to Γ (1/14)/Γ (4/7). From these considerations follows
the second limit in (10.6). In addition, it also follows that β(δ, Re) tends to
infinity for δ → 0, due to the second factor in (10.5).

To prove the first limit in (10.7), note first that the numerator in the last
factor in (10.5) tends to zero for Re → ∞ by (10.8). The denominator will be
multiplied by the leading factor. Inserting the definition (10.3) of η, we find
for the second term in the denominator,

lim
Re→∞

Re34/35
[
1 − erf

(
a Re−1/5

)]
= ∞ a > 0.

The rule of Bernoulli–de L’Hôpital gives for the first term in the denominator,

lim
Re→∞

Re
(
Γ (a) − Γ (a, b Re−2/5)

)
= ∞ a, b > 0.

Thus, the denominator multiplied by the leading term tends to infinity, which
proves the first limit in (10.7).

The second limit in (10.7) can be obtained also by the rule of Bernoulli–
de L’Hôpital. For details, see [178].

Remark 10.6. It is interesting that the limiting forms of the optimal linear
friction coefficient are similar in the 3D turbulent case to those in the 2D
laminar case. In some sense, this dimension independence indicates that δ
and Re are the correct variables for the analysis.

10.4.2 The 1/nth Power Law in 3D

When considering the α-power law

u =

⎧⎨⎩U∞

(
y

η

)α

for 0 ≤ y ≤ η,

U∞ for η < y,

v = w = 0 for 0 ≤ y,

the case α = 1/7 is the most commonly used. However, the best available data
on turbulent boundary layers suggest that the value α = 1/7 is not universal,
but should vary slowly with Reynolds number via [258]

α = 1/n =
1.085
ln(Re)

+
6.535

ln(Re)2
,

see also Fig. 7.32 in [258]. Thus, it is important to employ here the analysis
in [178], Sect. 3, by treating the general case α = 1/n. As in the previous
section, this formula does not actually hold up to the wall (i.e. down to y = 0).
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Using it up to the wall ignores viscous sublayer effects and leaves an important
open problem.

Let the geometric situation be the same as in Sect. 10.4.1 and let, for
simplicity, n ∈ �. The 1/nth power law in 3D has the form

u =

⎧⎨⎩U∞

(
y

η

)1/n

for 0 ≤ y ≤ η,

U∞ for η < y,

v = w = 0 for 0 ≤ y,

where η is given as in (10.3).
The computation of the friction coefficient β(δ, Re) proceeds along the

same lines as Sect. 10.4.1. One obtains

u(x, 0, z) = (gδ ∗ u)(x, 0, z)

=
U∞
2

{(
1
π

)1/2 (
δ√
γ η

)1/n
[
Γ

(
n + 1
2n

)
− Γ

(
n + 1
2n

,

(√
γ η

δ

)2
)]

+
[
1 − erf

(√
γ η

δ

)]}
,

while

∂u

∂y
(x, 0, z) = gδ ∗ ∂u

∂y
(x, 0, z)

=
U∞
2n

( γ

δ2π

)1/2
(

δ√
γ η

)1/n
[
Γ

(
1
2n

)
− Γ

(
1
2n

, γ

(
η

δ

)2
)]

,

and finally

β(δ, Re) (10.10)

=
γ1/2(Re n δ)−1

[
Γ
(

1
2n

)− Γ

(
1
2n ,

(√
γvη

δ

)2
)]

[
Γ
(

n+1
2n

)− Γ

(
n+1
2n ,

(√
γ vη

δ

)2
)]

+π1/2
(√

γvη

δ

)1/n [
1 − erf

(√
γvη

δ

)] .

Along the same lines as the proof of Proposition 10.5, one can prove the
following double asymptotics of the friction coefficient, see [178]:

Proposition 10.7. Let β(δ, Re) be given as in (10.10). If Re is constant, then

lim
δ→0

β(δ, Re) = ∞, lim
δ→0

δ β(δ, Re) =
√

γ

n Re

Γ
(

1
2n

)
Γ
(

n+1
2n

) .
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If δ is constant, then

lim
Re→∞

β(δ, Re) = 0, lim
Re→∞

Re β(δ, Re) =
2
√

γ

δ
√

π
.

The basic idea of the simple (linear) slip-with-friction model introduced
in (10.2) is sound but the derivation of the model places severe limitations on
the flow (such as no recirculation regions, no reattachment points, . . .). Moti-
vated by some of these limitations, we will survey some elaborations of (10.2)
proposed in order to extend its applicability.

10.4.3 A Near Wall Model for Recirculating Flows

In the previous sections we studied linear near wall models, i.e. with a friction
coefficients β based upon a global Reynolds number. In recirculating flows,
there are usually large differences between reference velocities in the free-
stream and in the recirculation regions. Thus, a linear NWM will tend to
overpredict the friction in attached eddies and underpredict it away from
attached eddies. A solution of this difficulty is to base the NWM upon the
local Reynolds number as follows.

The analysis performed in the previous sections reveals that the predicted
local slip velocity, u · τ , is a monotone function of Re. Thus, the relationship
can be inverted and inserted into the appropriate place in the derivation of
the NWM to give a β dependent on the local slip speed,

β = β(δ, |u · τ |).
To carry out this program, we assume the 1/7th power law holds. The 2D
calculations in Sect. 10.4.1 reveal that the tangential velocity (10.5) can be
written in the following form:

u·τ 1 =
U∞
2

{(
1
π

)1/2 (1
ξ

)1/7 [
Γ

(
4
7

)
− Γ

(
4
7
, ξ2

)]
+ [1 − erf (ξ)]

}
= g(ξ),

(10.11)
with

ξ =
√

γ η

δ
=

√
γ cη

δ Re1/5
> 0.

Consequently one finds, by direct evaluation,

du · τ 1

dξ
= g′(ξ) = − U∞

14
√

π

(
1
ξ

)8/7 [
Γ

(
4
7

)
− Γ

(
4
7
, ξ2

)]
< 0,

and this calculation proves the following lemma.

Lemma 10.8. Let u · τ 1 be given by (10.11). Then, u · τ 1 is a strictly mono-
tone, decreasing function of ξ, hence a strictly monotone increasing function
of Re. Thus, an inverse function ξ = g−1(u · τ1) exists.
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An ideal NWM can thus be obtained by using this inverse function for Re
in (10.5):

β = β(δ, g−1(u · τ )), (10.12)

and β given by (10.5).
However, this cannot easily be used in practical calculations. Thus, we shall

develop an accurate and simple approximate inverse to g(ξ) which still cap-
tures the correct double asymptotics. The idea to obtain a usable non-linear
friction coefficient consists in: (i) finding an approximation g̃(ξ) of g(ξ) which
can be easily inverted, and (ii) replacing ξ and Re in (10.5) by g̃−1(u · τ 1).

A careful examination of g(ξ) reveals that an appropriate approximation
over 0 ≤ ξ < ∞ is that of the form

u · τ 1 ≈ U∞
2

exp
(−a ξb

)
with a, b ∈ �+.

This gives

ξ =
(
−1

a
ln
(

2u · τ 1

U∞

))1/b

and Re =
(√

γ cη

δξ

)5

.

The constants a and b must be chosen such that the approximation is the best
in a least squares sense: find a, b > 0 that minimize the expression∫ ξr

ξl

[(
1
π

)1/2(1
ξ

)1/7(
Γ

(
4
7

)
−Γ

(
4
7
, ξ2

))
+[1 − erf (ξ)]−exp

(−aξb
)]2

dξ.

(10.13)
In the above formula, the left boundary ξl and the right boundary ξr of the
integral must be specified by using the data of the given problem. If they
are given, the optimal parameters can be approximated numerically. Such an
approximation can be obtained in the following way: the interval [ξl, ξr] is
divided into N equal subintervals [ξi, ξi+1] with ξ0 = ξl and ξN = ξr. Then,
the continuous minimization (10.13) is replaced by its discrete counterpart:
find a, b > 0 that minimize the expression

N∑
i=0

[(
1
π

)1/2( 1
ξi

)1/7(
Γ

(
4
7

)
− Γ

(
4
7
, ξ2

i

))
+ [1 − erf (ξi)] − exp

(−aξb
i

)]2

.

The necessary condition for a minimum, i.e. that the partial derivatives with
respect to a and b vanish, leads to a nonlinear system of two equations. This
can be solved iteratively, e.g. by Newton’s method. We give some examples of
optimal parameters for some intervals in Table 10.1. These parameters were
computed with N = 50 000 using Newton’s method. An illustration of the
approximation is presented in Fig. 10.4.

Preliminary testing of NWM of the above type, performed by John, Lay-
ton, and Sahin [178] and Sahin [269] on flow over a step, seems to suggest
that they improve the estimation of the reattachment point before separation
occurs.
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Table 10.1. Optimal parameters in (10.13) for different intervals [ξl, ξr]

ξl ξr a b

0 0.1 0.142864 1.00312
0 1 0.137149 0.961851
0 10 0.154585 0.497275
0 100 0.238036 0.268180
0 1 000 0.342360 0.174579
0 106 0.689473 0.0812879
1 10 0.170289 0.444825

Fig. 10.4. The function (10.11) and its exponential approximation according to
Table 10.1, [ξl, ξr] = [0, 1] (left), [ξl, ξr] = [0, 100] (right), U∞ = 2

Remark 10.9. We stress that the above model, though being nonlinear, is only
one step along the required path of developing NWMs for practical flows. In
the following subsections we will survey the steps that (to us at this point in
time at least) seem necessary.

10.4.4 A Near Wall Model for Time-averaged Modeling
of Time-fluctuating Quantities

Boundary layer theory (e.g. Schlichting [271]) describes time-averaged flow
profiles near walls. Thus, time-fluctuating information is not incorporated
into NWM like (10.2). This (necessarily omitted) fluctuating information in
the wall-normal direction can play an important role in triggering separation
and detachment, as pointed out in Layton [205].

One attempt to mimic these effects is to introduce noise into the wall-
normal condition, aiming to trigger separation and detachment when attached
eddies become sufficiently unstable:

u·n = δ2 ω(x, t) and β u·τ j +
2

Re
n·∇su ·τ j = 0 on ∂Ω×[0, T ], (10.14)

where ω(x, t) is highly fluctuating and satisfies
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0 =
∫

∂Ω

ω(x, t) dσ(x) for each t ∈ [0, T ]. (10.15)

The compatibility condition (10.15) is required by the incompressibility con-
dition ∇ · u = 0, which implies

0 =
∫

Ω

∇ · u(x) dx =
∫

∂Ω

u · n dσ(x) = δ2

∫
∂Ω

ω(x, t) dσ(x).

The ad hoc modification (10.14) is similar in spirit to so-called “vorticity
seeding” methods. A preliminary analytical result, at least in the case of the
2D NSE, has been recently obtained by Berselli and Romito in [35], where
nearly optimal conditions on ω ensuring the existence of weak solutions in the
sense of Leray–Hopf are found. In addition, it is proved that as δ → 0 the
solutions to the vorticity seeding model converge (in appropriate norms) to
those of the NSE with the usual no-slip boundary condition.

10.4.5 A Near Wall Model for Reattachment
and Separation Points

In the previous Sects. 10.4.1 and 10.4.2 the friction coefficient β has been
derived using asymptotics of time averages of attached turbulent boundary
layers along flat plates. Thus, it is not applicable when the curvature of the
boundary becomes large relative to other physical parameters (such as at
a corner) and it fails completely at a reattachment or separation point. The
geometry of flows at such points suggests that at such points u · n �= 0 but
u · τ .= 0. Thus, at reattachment/separation points, a wall-normal condition
of the form

γ u · n + n ·
(

2
Re

∇su − p �

)
· n = 0

should be investigated for the NSE3. Much less is known about flow near
such points. There is one known exact solution (ũ, p̃) for a jet impinging upon
a wall, Schlichting [271], which has an analogous flow pattern. From this, the
resistance coefficient γ could be calculated via

γ =
−n · [2Re−1(gδ ∗ ∇sũ) − gδ ∗ p̃ �

] · n
(gδ ∗ ũ) · n

∣∣∣∣
∂Ω

. (10.16)

So far, this calculation has not been performed in significant cases and the
correct double asymptotics of γ = γ(δ, Re) are still unclear.
3 Clearly in the case of the Smagorinsky model this will become

γ u · n + n ·
(

2

Re
∇su + (Csδ)

2|∇su|∇su − p �

)
· n = 0.
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10.5 Conclusions

To summarize an admittedly speculative program for NWMs, we propose local
boundary conditions for an LES average velocity u on walls of the general
form:⎧⎪⎨⎪⎩

β (δ, |u · τ |)u · τ i + n · σ(u, p) · τ i = 0 on ∂Ω × [0, T ]

γ u · n + n · σ(u, p) · n = δ2 ω(x, t) on ∂Ω × [0, T ].

(10.17)

The nonlinear friction coefficient β = β(δ, |u · τ |) can be calculated fol-
lowing (10.12) and the linear filtration-resistance coefficient γ is calculated
by (10.16). The wall-normal forcing ω(x, t) is a perturbation satisfying the
consistency condition (10.15).

So far, only preliminary tests have been performed with the simplest, first
step (10.2) in the direction of (10.17), with moderate success, Sahin [269]. The
form we are seeking for the NWMs will ensure the combined LES model plus
NWM has a chance at robustness: the conditions (10.17) make mechanical
sense and mathematical tools exist for studying the well-posedness of (10.17)
with an LES model. Even in this simple approach, the important effect of the
viscous sublayer has been omitted to make the calculations tractable. Thus,
finding and testing this correction is an interesting open problem.

The quest for the “right” boundary conditions (NWMs) for LES models
represents one of the most important challenges in LES. This is a very ac-
tive area of research, and giving a detailed presentation of existing NWMs is
a challenge in itself and, clearly, beyond the scope of this book. The reader is
referred to Sagaut [267], and Piomelli and Balaras [253] for detailed surveys.

In this chapter, we just tried to sketch the general framework and list some
of the main directions in the development of NWM. Thus, unfortunately, we
had to leave out some of these NWMs. We preferred to focus instead on one
promising direction that we have been exploring lately.
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Variational Approximation of LES Models

11.1 Introduction

In the approximation of underresolved flow problems, one question that reap-
pears is: What are the correct variables to seek to compute? In LES the
“answer” is the large, spatial, coherent structures. The traditional definition
of the structures (u, p) is by convolution or space filtering:

u(x, t) :=
∫
�d

u(x − x′, t) gδ(x′) dx′ p(x, t) :=
∫
�d

p(x − x′, t) gδ(x′) dx′.

Averaging/filtering the Navier–Stokes equations is the traditional approach
in LES. As we have seen, it leads to problems of closure (a closure model
must be selected), near wall modeling (boundary conditions for flow averages
must be provided), and noncommutativity of filtering and differentiation on
bounded domains. The resulting continuum model must still be discretized
and an approximate solution calculated. Assessing the reliability of the com-
puted solutions inevitably leads to classic numerical analysis issues of stability,
consistency, and convergence of an algorithm as well as the questions of well
posedness of the continuum model.

In the following sections, we give a description of the variational methods
that are used in the experiments presented in the next chapter. At this point,
there are more open questions than clear theoretical answers in the numeri-
cal analysis of LES models. In particular, the classic approaches to stability,
consistency, and convergence do not give predictions for the most important
outputs of turbulent flow calculations, namely, time-averaged flow statistics.
A new numerical analysis needs to be developed studying the accuracy of
flow statistics for problems in which the actual flow predictions may not be
accurate!

One of the most interesting recent approaches to LES is the Variational
Multiscale Method (VMM), developed by Hughes and his co-workers [160].
Related ideas have been pursued by Temam and co-workers as the “dynamic



276 11 Variational Approximation of LES Models

multilevel method” [96] and Brown et al. [47] and Hylin et al. [163] as the
“additive turbulent decomposition.” Each approach has its own interesting
and unique features. In the VMM, the above “answer” is that the large solu-
tion scales (large eddies) are defined by orthogonal projection onto functions
which can be represented on a given mesh. A simple approximation of the first
unresolved scale is made (and used as a closure model) and only the effects
of further unresolved scales on the first unresolved scales are modeled. The
new and interesting point is that all this occurs in a variational framework.
The exact coupling between large and small scales in the NSE then acts as
a type of “expert system” to determine the effective LES model. Although
the VMM is outside the classical approach to LES, which we focus on in this
book, because of its great promise, we give a synopsis of one approach to
VMM in Sect. 11.5.

One of the most promising approaches to EV models consists of models
whose action is restricted to either the fluctuations or the smallest resolved
scales. In Sect. 11.6, we consider one approach to such methods. Interestingly,
we will also show in Sect. 11.6 that, by simple choices of the model fluctua-
tions and large scales, this method is equivalent to a Variational Multiscale
Method! This leads to the idea that the VMM framework might be univer-
sal. Is every consistently stabilized variational approximation a Variational
Multiscale Method? Is every LES model that (given the approximation of
small scales) uses exact equations for large-scale motion also a Variational
Multiscale Method? The answers to these questions are unknown.

11.2 LES Models and their Variational Approximation

The traditional path (which we study in this section) is to average the NSE,
giving

ut + ∇·(uuT ) − 1
Re

∆u + ∇p + ∇·(uuT − uuT ) = f + Aδ(u, p)(11.1)

∇ · u = 0. (11.2)

Next a closure model is chosen: the subfilter-scale stress tensor τ is replaced
by one depending only on u;

τ = uu− uu ≈ S(u,u),

and approximate boundary conditions are selected. (Recall that actually what
is needed is a trace-free approximation of the trace-free part of uuT −uuT .)
Picking a simple example, we choose no-penetration and slip-with-friction (see
Chap. 9)

u · n = 0 and β u · τ j − n · σ(u, p) · τ j = 0 on ∂Ω,
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where n, τ j are respectively the normal and tangent vectors to ∂Ω, while σ
is the total stress for the model

σ(u, p) := p �− 2
Re

∇su + S(u,u).

Finally, approximation to the commutation error Aδ(u, p) (see Chap. 9 for
a detailed presentation) is needed and, although there are ideas under devel-
opment, an acceptable one is not yet known. Thus, we shall drop it for the
moment.

With these choices, we then have a boundary value problem for a velocity
w(x, t) and a pressure q(x, t) which model u(x, t) and p(x, t) and which are
given

wt + ∇ · (wwT ) −∇ ·
(

2
Re

∇sw − S(w,w)
)

+ ∇q = f in Ω × (0, T ]

(11.3)

∇ ·w = 0 in Ω × (0, T ] (11.4)
w(x, 0) = u0(x) in Ω (11.5)
w · n = 0 and β w · τ j − n · σ(w, p) · τ j = 0 on ∂Ω × (0, T ],

(11.6)

where σ(w, q) := q �− 2
Re ∇sw + S(w,w), as above.

The system (11.3)–(11.6) must still be discretized and an approximate
solution calculated by good algorithms on computationally feasible meshes.
Further, since the only real data and solutions to (11.3) that are available
are based on these simulations, it is very difficult to distinguish in prac-
tice between modeling errors (the error going from (11.1) to (11.3)) and
numerical errors (the error between (11.3) and its computational realiza-
tion). This introduces in an essential way the classical numerical analysis
questions of accuracy, stability, convergence, and robustness (meaning be-
havior of algorithms as h → 0 and δ → ∞) for discretizations of (11.3).
As usual though, the answers to such universal questions depend on spe-
cific features of each choice made and, in particular, on a clear understand-
ing of the mathematical foundation of the specific model (11.3) chosen. This
is a topic with enough scope for a series of books (in particular, we refer
to the ground breaking work in John [175]) and beyond the goals of the
present treatment. However, some results of variational approximation are re-
ported and the ideas of the algorithms behind those results will be described
herein.

11.2.1 Variational Formulation

The variational formulation of (11.3)–(11.6) is obtained in the usual way:
multiply by a test function v (not necessarily divergence-free), integrate over
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Ω, and integrate by parts. This gives

(wt,v) + (w · ∇w,v) +
(

2
Re

∇sw − S(w,w),∇v
)

+ Γ − (q,∇ · v) = (f ,v),

where Γ denotes the boundary terms arising from all the integration by parts.
Many of these terms vanish if v · n = 0 on ∂Ω (which we shall assume) and
the term ∇v may be replaced by ∇sv if S(w,w) is a symmetric tensor.

Assuming v · n = 0, the boundary term Γ reduces to

Γ = −
∫

∂Ω

n ·
(

2
Re

∇sw − S(w,w)
)
· v dS.

The vector function v can be decomposed as

v = (v · n)n + (v · τ j) τ j = (v · τ j) τ j

(since v · n = 0 on the boundary). Thus, Γ becomes

Γ =
∫

∂Ω

(n · σ(w, q) · τ j) (v · τ j) dS,

which, due to the boundary conditions imposed, becomes

Γ =
∫

∂Ω

β(w)w · τ j v · τ j dS.

Thus, if we define

X :=
{
v ∈ [H1(Ω)]d : v · n = 0 on ∂Ω

}
Q :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0
}
,

one natural mixed variational formulation is to seek a velocity w : [0, T ] → X
and a pressure q : [0, T ] → Q, satisfying⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(wt,v) + (w · ∇w,v) +
(

2
Re

∇sw − S(w,w),∇sv
)

+
∫

∂Ω

β(w)w · τ j v · τ j dS − (q,∇ · v) = (f ,v), ∀v ∈ X,

(∇ · w, λ) = 0, ∀λ ∈ Q.
(11.7)

Even if S(w,w) = 0, the difference in the boundary conditions requires an
extension of the usual mathematical architecture surrounding the analysis and
numerical analysis of the Navier–Stokes equations (Girault and Raviart [137]
and Gunzburger [146]). This extension has been successfully carried out in, for
example, [202, 50, 51, 52] and tested in [178, 175]. Thus, it is safe to suppress
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some technical points related to the boundary conditions and X vs. [H1
0 (Ω)]d

(the usual velocity space).
A variational approximation to the model is simply a finite-dimensional

approximation to the variational form of the model (11.7) rather than to its
strong form (11.3). Many choices are possible here as well; the most funda-
mental is the Galerkin method (which we have already used as a theoretical
tool to prove existence of solutions to several LES models). In the Galerkin
method, finite-dimensional conforming velocity–pressure subspaces Xh ⊂ X
and Qh ⊂ Q are chosen, and approximate solutions

wh : [0, T ] → Xh, qh : (0, T ] → Qh

are found satisfying (11.7) restricted to Xh × Qh:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(wh

t ,vh) + b∗(wh,wh,vh) +
(

2
Re

∇swh − S(wh,wh),∇svh

)
+
∫

∂Ω

β(wh)wh · τ j vh · τ j dS − (qh,∇ · vh) = (f ,vh), ∀vh ∈ Xh,

(∇ ·wh, λh) = 0, ∀λh ∈ Qh.
(11.8)

For stability reasons, the second term in (11.7) is usually replaced by its
explicit skew-symmetrization b∗(·, ·, ·) in (11.8) given by

b∗(u,v,w) :=
1
2
(u · ∇v,w) − 1

2
(u · ∇w,v).

Also, for stability of the pressure qh, the spaces Xh and Qh must either satisfy
the inf-sup (Ladyžhenskaya–Babuška–Brezzi) compatibility condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖ ‖∇vh‖ ≥ C > 0 uniformly in h,

which we will assume, or include extra stabilization of the pressure employed
in (11.8).

Further choices must be made of Xh ×Qh, determining different methods
such as spectral, finite element or spectral element methods. Also, a further
discretization of the time variable must be selected for (11.9) giving yet more
algorithmic options.

Proposition 11.1 (Stability of (11.8)). Let (wh, qh) satisfy (11.8). Then,

1
2
‖wh(t)‖2

+
∫ t

0

[
1

Re
‖∇swh‖2 − (S(wh,wh),∇svh) +

∫
∂Ω

β(wh) |wh · τ j |2 dS

]
dt′

≤ 1
2
‖u0‖2 + C Re

∫ t

0

‖f‖2
−1 dt′. (11.9)
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If, additionally, β(·) ≥ β0 > 0 and the model in dissipative in the sense that

(S(v,v),∇sv) ≤ 0 ∀v ∈ X,

then the method (11.8) is stable.

Proof. Set vh = wh, λh = qh, and add the two equations in (11.8). This gives

1
2
‖wh(t)‖2 +

2
Re

‖∇swh‖2 − (S(wh,wh),∇swh) +
∫

∂Ω

β(wh) |wh · τ j |2 dS

= (f ,wh)

≤ C Re ‖f‖2
−1 +

1
Re

‖∇swh‖2,

where we applied Körn’s inequality to get the right-hand side. Integrating the
result from 0 to t, yields (11.9). ��

On the Stability of the Method

The two conditions for stability in Proposition 11.1 are worth examining. The
first is that

β(w) = β(w, δ, Re) ≥ β0 = β0(δ, Re) > 0.

This should be true of any reasonable boundary condition (keeping in mind the
typical limiting behavior of β: β → +∞ as δ → 0 and β → 0+ as Re → +∞).

The second condition is dissipativity:∫
Ω

S(v,v) : ∇sv dx ≤ 0 ∀v ∈ X. (11.10)

This condition is not universally true for models in use. For EV models

S∗(v,v) = −νT (δ,v)∇sv, where νT ≥ 0,

(11.10) does hold. However, EV models have large modeling errors. For other
models with asymptotically smaller modeling errors it is more problematic.
For example, both the Gradient LES model (7.3) and the Rational LES (7.18)
model in Chap. 7 fail (11.10), as does the Bardina and, in fact, most scale
similarity models (Chap. 8). Thus, the stability of discretizations of non-eddy
viscosity LES models must also be treated on a case-by-case basis exploiting
the particular features of each model: a universal analysis of discretization
errors in LES models is not yet achievable.

Furthermore, the dissipativity assumption (11.10) is too restrictive: many
important models and interesting physical behaviors are eliminated by (11.10).
The question remains open: what is the correct one? One (speculative) possi-
bility is to ask that S(v,v) act in a dissipative manner on fluctuations:
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Ω

S(v′,v′) : ∇sv′ dx ≤ 0 for v′ = v − v, and ∀v ∈ X,

while it acts as a sort of reaction term on the resolved scales. The correct
formulation of this second condition is not yet clear.

Another (speculative) possibility is to connect the kinetic energy balance
in the discrete equations to the kinetic energy balance in the model by decon-
volution to that of the continuous NSE. Briefly, let A denote an Approximate
Deconvolution operation. This means that, for smooth enough v,

A v = v + o(1) as δ → 0.

If w ≈ u, then

(w, A∗Aw) ≈ (Aw, Aw) ≈ ‖u‖2.

Further, it should be hoped that since (∇· (uu),u) = 0, then (∇· (uu), A∗u)
≈ 0. Now, when uu is modeled by uu+S(u,u), one approach to try to verify
stability is to construct an operator A such that

(∇ · (w w + S(w,w)), A∗Aw) = 0.

If such a construction is achievable, then the model is stable. Further, when
achievable, it suggests that the above variational formulation is not the correct
one for numerics: the equation should be tested against A∗Avh instead of vh.

11.3 Examples of Variational Methods

The three most prominent examples of variational methods are spectral meth-
ods, finite element methods and spectral element methods. They differ only
in the choices of the spaces Xh and Qh.

11.3.1 Spectral Methods

The books of Peyret [252] and Canuto et al. [54] give excellent, comprehen-
sive treatments of spectral methods in computational fluid dynamics. Briefly,
spectral methods choose a basis for Xh and Qh that is very close to eigenfunc-
tions of the Stokes operator under the indicated boundary conditions. These
choices simplify the equations considerably. They also ensure very high ac-
curacy. Their computational realization for simple geometries and boundary
conditions is usually very direct and easy. On the other hand, their intricacy
increases rapidly with geometric complexity. In simple geometries (which of-
ten correspond to geometries for which good experimental data is available)
it is often thus possible to pick basis functions and velocity spaces Xh that
are exactly divergence-free, thereby eliminating the pressure from the discrete
system.
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11.3.2 Finite Element Methods

There are a number of excellent books treating Finite Element Methods
(FEM) for flow problems. The books of Pironneau [256], Gunzburger [146],
Cuvelier, Segal, and van Steenhoven [80], and the series by Gresho and
Sani [139, 140] are good beginning points, and Girault and Raviart [137]
is the definitive reference to the mathematical analysis of the method. FEM
are based on a flexible description of an unstructured finite element mesh on
the flow domain. Once such a mesh is constructed and stored in the appro-
priate way, the velocity and pressure finite element spaces are constructed
based upon the mesh. Typically, FEMs compute an approximate velocity and
pressure that is globally continuous across mesh edges and polynomial inside
each mesh cell. Finite element methods are very highly developed for laminar
flow problems, see again [256, 146, 140, 137]. The behavior of the methods for
turbulent flows and for approximating turbulence models is much less under-
stood; see Mohammadi and Pironneau [239] for some first steps.

11.3.3 Spectral Element Methods

An excellent introduction to the Spectral Element Methods (SEM) is given
in the book of Deville, Fischer, and Mund [89]. SEM, introduced by Patera
and coworkers [251, 224], combine the geometric flexibility of finite element
methods with the accuracy of spectral methods. Thus, they represent an ap-
propriate tool for the LES of turbulent flows (where the high accuracy of the
numerical method is believed to be important) in complex geometries that
would be challenging for spectral methods. SEM employ a high-order weighted
residual technique based on compatible velocity and pressure spaces that are
free of spurious modes. Locally, the spectral element mesh is structured, with
the solution, data, and geometry expressed as sums of Nth-order Lagrange
polynomials on tensor-products of Gauss or Gauss–Lobatto quadrature points.
Globally, the mesh is an unstructured array of K deformed hexahedral ele-
ments and can include geometrically nonconforming elements. For problems
having smooth solutions, the SEM achieve exponential convergence with N ,
despite having only C0 continuity (which is advantageous for parallelism). The
mathematical analysis associated with SEM was presented by Maday and Pat-
era [224, 225]. For recent developments in SEM, including time-discretizations,
preconditioners for the linear solvers, parallel performance, and stabilization
high-order filters, the reader is directed to the papers of Fischer and collabo-
rators [105, 107, 108].

11.4 Numerical Analysis of Variational Approximations

In this section we address some very basic facts concerning the numerical
analysis of variational equations. This topic is worthy of an entire book and we
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want to focus on some specific problems and questions arising in the numerical
analysis of LES equations. We essentially restrict discussion to the role of
stability.

Since the stability of variational approximation depends upon the exact
choice of the LES model, it is not surprising that a universal and model-
independent numerical analysis of variational approximation is not possible.
For specific models, the overarching goal of such a numerical analysis is to
prove convergence to the solution of the model as h → 0, in a natural norm
(such as L2(Ω × (0, T )) which is uniform in the Reynolds number, for δ fixed.
This question is open for most interesting models (with only a few first steps,
e.g. John and Layton [177], and M. Kaya [185].) In fact, the numerical analysis
of [177] for the Smagorinsky model hardly seems extensible to most good
models. Thus, it seems that a “new” numerical analysis is needed to address
issues in LES. One possible avenue is to study convergence of statistics. This
goal is to give analytic insight describing how well statistics computed using
a given model and algorithm match the true statistics. We give one example
next. Let 〈·〉 denote the time average of the indicated quantity. For example,

〈φ(x, t)〉 = lim
T→∞

1
T

∫ T

0

φ(x, t) dt.

When the above limit does not exist, it is usual to replace it by a limit superior
(or a Banach limit agreeing in value with the lim sup). One important statistic
from turbulent flows is the time-averaged energy dissipation rate, defined by

〈ε(u)〉 := lim sup
T→∞

1
T

∫ T

0

1
|Ω|

∫
Ω

1
Re

|∇su|2 dx, dt.

If f(x, t) is a smooth, bounded function, e.g., f ∈ L∞(0,∞; L2(Ω)), then it
is quite easy to show that for any weak solution of the NSE satisfying the
energy inequality

〈ε(u)〉 ≤
〈

1
|Ω|

∫
Ω

f · u dx
〉

,

(i.e. the time-averaged energy dissipation rate is bounded by the time-
averaged power input rate) and, if u satisfies the energy equality then equality
holds in the above:

〈ε(u)〉 =
〈

1
|Ω|

∫
Ω

f · u dx
〉

.

Let us focus on the “easy” case of eddy viscosity models. Assume

S∗(v,v) = −νT (δ,v)∇sv. (11.11)

Here, energy is dissipated due to three effects:

1. molecular diffusion,
2. eddy diffusivity, and
3. friction large eddies encounter when contacting walls.
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Including all three effects gives the computed energy dissipation rate to
be given by

〈εh
model(w

h)〉 := lim sup
T→∞

1
T

∫ T

0

1
|Ω|

[ ∫
Ω

(
1

Re
+ νT (wh)

)
|∇swh|2 dx

+
∫

∂Ω

β(wh) |wh · τ j |2 dS

]
dt. (11.12)

It is not hard to show (after some simple calculations) that for eddy viscosity
models (i.e. models whose subgrid stress tensor satisfies (11.11)) under the
same conditions on f as in the NSE case, that

〈εh(wh)〉 =
〈

1
|Ω|

∫
Ω

f ·wh dx
〉

.

Additionally, if f = 〈f〉 (e.g. if f = f(x)), then〈∫
Ω

f · wh dx
〉

=
∫

Ω

f · 〈wh〉 dx.

Collecting these – admittedly simple – observations into a proposition gives
the following:

Proposition 11.2. Suppose f ∈ L∞(0,∞; L2(Ω)), the LES model is an eddy
viscosity model (i.e. (11.11) holds), and the limits in the definitions of 〈ε(u)〉
and 〈εh(wh)〉 exist. Then

〈ε(u)〉 − 〈εh(wh)〉 ≤
〈

1
|Ω| (f ,u)

〉
−
〈

1
|Ω| (f ,w

h)
〉

.

If the NSE satisfies the energy equality, then equality holds in the above.

Thus, the key to replicating this statistic (at least) is to match as accurately
the time-averaged rate of power input to the flow through body force–flow in-
teractions. One idea is to monitor an a posteriori estimator for the functional

wh �→ 1
tn

∫ tn

0

1
|Ω| (f ,w

h) dt′

and, using that information, adaptively tune the eddy diffusivity for the fol-
lowing time step.

Remark 11.3. The case of a flow driven by a given body force is a very easy
case. There have been some exciting developments and analytic estimates for
shear flows (a much harder case). See the work of Doering and Constantin [90],
Doering and Foiaş [91], Wang [311], and the references therein: [61, 109, 280,
281]. Extension of this work to LES models is an interesting and important
open problem. So far only the Smagorinsky model has been considered [207].
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11.5 Introduction to Variational Multiscale Methods

The VMM is naturally a variational method so it is most naturally pre-
sented for variational discretizations. To begin, we consider the finite ele-
ment discretizations of the NSE on a polyhedral domain in �3, satisfying
no-slip boundary conditions, driven by a body force, and with the usual
(mathematically convenient form of the) pressure normalization condition
p ∈ Q.

For reader convenience, we collect here all the needed definitions of func-
tional spaces and multilinear forms.

Definition 11.4. (a) ‖ · ‖, (·, ·) will denote the usual L2(Ω) norm and inner
product

(φ, ψ) =
∫

Ω

φ · ψ dx, ‖φ‖ = (φ, φ)1/2.

(b) (X, Q) will denote the usual velocity-pressure Sobolev spaces

X := {v ∈ [H1(Ω)]d : v|∂Ω = 0},
Q :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = (q, 1) = 0
}

.

(c) V will denote the space of weakly divergence-free functions in X:

V := {v ∈ X : (∇ · v, q) = 0, ∀ q ∈ Q}.

(d) a(u,v) : X × X → � will denote the bilinear form

a(u,v) :=
∫

Ω

1
Re

∇su : ∇sv dx,

and b(u,v,w) : X × X × X → � will denote the (explicitly skew-
symmetrized) nonlinear convection trilinear form

b(u,v,w) :=
1
2

∫
Ω

[u · ∇v ·w − u · ∇w · v] dx.

It is important to recall that, due to the inequalities of classical mechanics of
Poincaré and Körn, the following are all equivalent norms on X:

‖u‖1 :=
[‖∇u‖2 + ‖u‖2

]1/2
, ‖∇u‖, and ‖∇su‖.

Further, note that, by construction,

b(u,v,w) = −b(u,w,v) and b(u,v,v) = 0, ∀u,v,w ∈ X.
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The usual, mixed variational formulation of the continuous NSE that is
used as a first step to an approximate solution is then: find u : [0, T ] → X
and p : (0, T ] → Q satisfying⎧⎪⎨⎪⎩

(ut,v) + a(u,v) + b(u,u,v) − (p,∇ · v) = (f ,v) ∀v ∈ X,

(q,∇ · u) = 0 ∀ q ∈ Q,

u(x, 0) = u0(x) ∀x ∈ Ω.

(11.13)

Following Hughes, Mazzei, and Jansen [160], in the VMM a finite element
mesh is selected and a standard velocity finite element space Xh ⊂ X is con-
structed. This finite element space is identified as the space of mean velocities
([160], p. 52). Specifically, decompose

X = X⊕ X′, where X := Xh is the chosen finite element space. (11.14)

Obviously, the complement X′ turns out to be infinite dimensional.
Corresponding to (11.14), define the decomposition of the velocity into

means and fluctuations as

u = u + u′, u = uh := Pu ∈ Xh, u′ = (�− P )u ∈ X′,

where P : X → X = Xh is some projection operator. Insert u = uh + u′

in (11.13), then alternately set v = vh then v = v′ in (11.13). This yields the
following two coupled, continuous systems for u and u′ which are completely
equivalent1 to the continuous problem (11.13):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(ut + u′
t,v

h) + a(u + u′,vh) + b(u + u′,u + u′,vh) − (ph + p′,∇ · vh)
= (f ,vh) ∀vh ∈ Xh,

(ut + u′
t,v

′) + a(u + u′,v′) + b(u + u′,u + u′,v′) − (ph + p′,∇ · v′)
= (f ,v′) ∀v′ ∈ X′.

These coupled systems, after algebraic rearrangement, give

(ut,vh) + a(u,vh) + b(u, u,vh) − (ph,∇ · vh) − (fh,vh) = (r′,vh), (11.15)

where

(r′,vh) := (f ′,vh) − b(u′,u′,vh)
− [(u′

t,v
h) + a(u′,vh) + b(u,u′,vh) + b(u′,u,vh − (p′,∇ · vh)]

and

(u′
t,v

h) + a(u′,v′) + b(u′,u′,v′) − (p′,∇ · v′) − (f ′,v′) = (rh,v′), (11.16)

1 These should also be coupled with (∇ · (uh + u′), q) = 0, ∀ q ∈ Q.
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where

(rh,v′) := (f ,v′) − b(u,u,v′)
− [(ut,v′) + a(u,u′) + b(u′,u,v′) + b(u,u′,v′) − (p,∇ · v′)].

Thus (as pointed out in [160]), the large scales are also driven by the projec-
tion of the small scales’ residual into Xh and vice versa for the small scales.
In the usual (continuous time) element method, the RHS of (11.15) would
be identically zero so none of the effects of the unresolved scales would be
incorporated.

In the Variational Multiscale Method, (11.15) and (11.16) are simultane-
ously discretized, as follows (again, following [160]):

• with Xh chosen, a complementary finite dimensional subspace, X′
b, is cho-

sen for the discrete fluctuations;
• since (11.16) involves reduction of an infinite dimensional problem (in X′)

into a finite-dimensional problem (in X′
b) extra stabilization is added to

the discrete fluctuation equation in the form

(νT (u)∇u′,∇v′) .

With the above choices, the problem is to find

u : [0, T ] → Xh, p : (0, T ] → Qh,

u′
b : [0, T ] → X′

b, p′ : (0, T ] → Q′
b

satisfying

uh(0) = u0 = Pu0 in Ω, u′
b(0) = u′

0 ≈ (�− P )u0 in Ω,

and satisfying

(ut,vh) + a(u,vh) + b(u,u,vh) − (ph,∇ · vh) + (qh,∇ · u) − (fh,vh)

= (r′b,v
h) ∀vh ∈ Xh, qh ∈ Qh (11.17)

where

(r′b,v
h) := (f ′,vh) − b(u′,u′,vh)

− [(u′
bt,v

h) + a(u′
b,v

h) + b(u,u′
b,v

h)

+ b(u′
b,u,vh) − (p′b,∇ · vh)],

and

(u′
b,t,v

′
b) + a(u′

b,v
′
b) + (νT (u + u′

b)∇su′
b,∇sv′

b) + b(u′
b,u

′
bv

′
b)

−(p′b,∇ · v′
b) + (q′b,∇ · u′

b) = (rh,v′), ∀v′
b ∈ X′

b, ∀ q′b ∈ Q′
b, (11.18)
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where

(rh,v′
b) := (f ,v′

b) − b(u,u,v′
b)

− [(ut,v′
b) + a(u,v′

b) + b(u′
b,u,v′

b) + b(u,u′
b,v

′
b) − (ph,∇ · v′

b)].

The calculations reported in [161, 162] all employ simple variants on the
Smagorinsky model, e.g.

νT = (Csδ)2 |∇s(u + u′
b)|, νT = (Csδ)2 |∇su′

b|, etc.,

but acting only on the model for the small scales!
The above approximation actually yields (u + u′

b) as a DNS approxima-
tion to u since, so far, (almost) no information is lost between the NSE and
the discretization. The key to the method’s computational feasibility rests in
losing the right information.

For (11.17) for uh to be accurate all that is required is a rough approxima-
tion of u′

b from (11.18): only ‖r′b‖H−1(Ω) need be small. Thus, VMM’s typically
use a computational model for the fluctuations that uncouples (11.18) into one
small system per mesh cell. (This is the link to residual free bubbles, a finite
element idea that has established a connection between Galerkin FEMs and
streamline diffusion FEMs, Franca and Farhat [114], Franca, Nesliturk, and
Stynes [115], and Hughes [159].)

For each mesh cell Kh a bubble function φK is chosen such that φK > 0
in Kh but φK = 0 on ∂Kh. This gives

φKh ∈ H1
0 (Kh).

Define then
X′

b := span
{
φKh : all mesh cells Kh

}3
.

Good algorithms and good computational results flow from this choice of
X′

b, see [160]. The only drawback seems to be, that, since every function
in Xb vanishes on all mesh lines and mesh faces, this choice is, in essence,
a computational model that the fluctuations are quasi-stationary.

For many LES models, the global kinetic energy balance is very murky;
the kinetic energy in some can even blow up in finite time [173, 169]. However,
the VMM inherits the correct energy equality from the NSE.

Proposition 11.5. Consider (11.17) and (11.18) for νT ≥ 0. Let X̃ :=
Xh ⊕ X′

b and let ũ = u + u′
b. Then ũ satisfies:

1
2
‖ũ(t)‖2 +

∫ t

0

(
1

Re
‖∇sũ(t′)‖2 +

∫
Ω

νT (u)|∇su′(t′)|2 dx
)

dt′

=
1
2
‖u0‖2 +

∫ t

0

(f(t′), ũ(t′)) dt′.

Proof. Add (11.17) and (11.18). Then, set vh = u, v′
b = u′

b, qh = ph, and
q′b = p′b. After that, the proof follows exactly the NSE case. ��
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11.6 Eddy Viscosity Acting on Fluctuations as a VMM

The idea of subgrid-scale eddy viscosity can be thought of as being implicit
in the effect of inertial forces on the resolved scales in Richardson’s Energy
cascade. The most natural algorithmic interpretation occurs with spectral
methods in the early work of Maday and Tadmor [226] on spectral vanishing
viscosity methods. Recent work of Guermond [142, 143, 144] (see also [203,
160, 204]) has shown that bubble functions can be used to give a realization of
the idea in physical space as opposed to wavenumber space. Guermond [142,
143] has also shown that subgrid-scale eddy viscosity can provide good balance
between accuracy and stability.

These are exciting ideas that give mathematical structure to the physical
interpretation of the action of the SFS stress tensor on the resolved scales;
and, there is certainly more to be done. This section presents a third, comple-
mentary approach to subgrid-scale eddy viscosity of [204]. This third approach
has the following characteristics:

(i) It is based on a consistent variational formulation.
(ii) It uses essentially a multiscale decomposition of the fluid stresses rather

than the fluid velocities.
(iii) The computational model for fluctuations allows discrete fluctuations

that cross mesh edges and faces.

We shall see later that, after reorganization, it is actually a VMM. One con-
jecture coming out of this connection is that all consistently stabilized methods
are equivalent to a VMM.

To present the new method, we follow the notation of Sect. 11.5 (and
focus only on the simplest cases). Let πH(Ω) denote a coarse finite element
mesh which is refined (once, twice, . . .) to produce the finer mesh πh(Ω), so
h < H . On these meshes, conforming velocity–pressure finite element spaces
are constructed:

QH ⊂ Qh ⊂ Q := L2
0(Ω), and XH ⊂ Xh ⊂ X := [H1

0 (Ω)]3.

These are assumed to satisfy the usual inf-sup condition for stability of the
pressure (explained in Gunzburger [146]):

inf
qµ∈Qµ

sup
vµ∈Xµ

(qµ,∇ · vµ)
‖qµ‖ ‖∇vµ‖ ≥ β > 0, for µ = h, H.

Since the key is to construct a multiscale decomposition of the deformation
tensor, ∇suh, we need deformation spaces. Since uh ∈ X, naturally

∇suh ∈ L :=
{
� = �ij : �ij = �ji and �ij ∈ L2(Ω), i, j = 1, 2, 3.

}
Accordingly, choose discontinuous finite element spaces on the coarse finite
element mesh πH(Ω):

LH ⊂ Lh ⊂ L.
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The best example to keep in mind is: for µ = h and H

Xµ :=
{C0 piecewise linear (vectors) on πµ(Ω)

}
,

Lµ :=
{
L2 discontinuous, piecewise constant (symmetric tensors) on πµ(Ω)

}
.

Note that in this example Lµ = ∇sXµ. (Also, it is well known that various
adjustments are necessary with low-order velocity spaces to satisfy the inf-
sup condition.) The idea of the method is to add global eddy viscosity to
the centered Galerkin FEM and to subtract its effects on the large scales as
follows:

Find uh : [0, T ] → Xh, ph : (0, T ] → Qh, and gH : (0, T ] → LH satisfying⎧⎪⎨⎪⎩
(uh

t ,vh) + a(uh,vh) + b(uh,uh,vh) − (ph,∇ · uh) + (qh,∇ · uh)

+ (νT∇suh,∇svh) − (νT gH ,∇svh) = (f ,vh), ∀vh ∈ Xh, ∀ qh ∈ Qh,

(gH −∇suh, �H) = 0, ∀ �H ∈ LH

(11.19)

This form of the subgrid scale stress tensor was proposed for the first time by
Layton [206]. However, the general idea of adding a global stabilization and
subtracting its undesired action is quite common in viscoelastic flow simula-
tions, e.g. the “EVSS-G” method, Fortin, Guénette, and Pierre [113].

The action of the extra terms in (11.19) is easy to assess. The second
equation of (11.19) implies that

gH = PH(∇suh), where P ′
H : L → LH is the L2 orthogonal projector.

With this the extra terms in the first equation of (11.19) can be rewritten

Extra Terms = (νT [(∇suh) − PH(∇suh)],∇svh).

It is natural to think of PH(∇suh) as a mean deformation, and of (� −
PH)(∇suh) as a deformation fluctuation.

Definition 11.6. With PH : L → LH the L2(Ω) orthogonal projector, define

(∇suh) := PH(∇suh), (∇suh)′ = (�− PH)(∇suh).

Equation (11.19) thus simplifies, using orthogonality, to

Bold Terms in (11.19) = (νT (∇suh)′, (∇suh)′).

Theorem 11.7. The method (11.19) is equivalent to: find uh : [0, T ] → Xh,
and ph : (0, T ] → Qh satisfying

(uh
t ,vh) + a(uh,vh) + b(uh,uh,vh) − (ph,∇ · vh) + (qh,∇ · uh)

(νT (∇suh)′, (∇svh)′) = (f ,vh), ∀vh ∈ Xh, qh ∈ Qh. (11.20)
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Thus, if we identify δ = H , then the method (11.19), or equivalently (11.20),
gives precisely the answer to finding an algorithmic realization of Richardson’s
idea of the cascade of energy through the cut-off length scale. Its stability (=
kinetic energy balance) is equally easy and clear.

Theorem 11.8. The solution uh of (11.19), (11.20) satisfies ∀t ∈ (0, T ]:

1
2
‖uh(·, t)‖2 +

∫ t

0

[
2

Re
‖∇suh‖2 +

∫
Ω

νT |(∇suh)′|2 dx
]

dt′

=
1
2
‖uh(·, 0)‖2 +

∫ t

0

(f ,vh)(t′) dt′.

Proof. Set vh = uh and qh = ph in (11.20) and repeat the proof of the NSE
case. ��

The numerical analysis of the method (11.19), (11.20) was begun in [204]
for convection-dominated, convection diffusion problems (with error estimates
that seem comparable to SUPG methods at a comparable stage of their devel-
opment.) Recently, a complete error analysis of the method for the NSE was
performed by S. Kaya [187], for the evolutionary convection diffusion problem
by Heitmann [149] and a new approach to time stepping, exploiting the spe-
cial structure of the discrete problem, by Anitescu, Layton, and Pahlevani [8].
There are many interesting possibilities for development and testing of this
method. The two we want to summarize herein are (i) alternate formulations
and (ii) the connection to VMMs [188].

Connection to Variational Multiscale Methods

The key idea is that a multiscale decomposition of the deformation induces
a multiscale decomposition of the velocities [187, 188]. As usual, let V,Vµ

denote the spaces of divergence-free functions and discretely divergence-free
functions: For µ = h and H

V :=
{
v ∈ X : (q,∇ · v) = 0 ∀ q ∈ Q

}
,

Vµ :=
{
vµ ∈ Xµ : (qµ,∇ · vµ) = 0 ∀ qµ ∈ Qµ

}
.

Definition 11.9 (Elliptic projection). For µ = h, H, Pµ
E : X → Vµ is the

projection operator satisfying

(∇s[w − PE(w)],∇svµ) = 0, ∀vµ ∈ Vµ.

If w ∈ V (i.e. ∇ · w = 0), then PEw is simply the discrete Stokes projection
into Xµ.

Lemma 11.10. For µ = h, H, Pµ
E : X → Vµ ⊂ Xµ is a well-defined projec-

tion operator, with uniformly bounded norm in X. Further, if LH = ∇sXh,
and PH : LH → L is the L2 projection, then, for any vh ∈ Vh,

PH(∇svh) = ∇s(PH
E vh). (11.21)
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Proof. That Pµ
E is well defined follows simply from the Lax–Milgram lemma,

Poincaré inequality, and Körn’s inequality. Equation (11.21) follows by un-
twisting the definitions of the L2 and elliptic projectors. ��
Lemma 11.10 shows that the multiscale decomposition of deformations,

∇suh = (∇suh) + (∇suh)′,

is equivalent to one for discretely divergence-free velocities with X := XH and

uh = uh + (uh)′, uh = PH
E uh, (uh)′ = (�− PH

E )uh.

From this observation, it follows that (11.19) is a VMM.

Theorem 11.11. The method (11.19) is a VMM. Specifically, uh = u+(uh)′,
where

u := PEuh ∈ XH , (uh)′ = (�− PH
E )uh.

The means u and the fluctuations (uh)′ satisfy the discrete VMM equations
from Sect. 11.5.

Of course, it is always interesting to establish a connection between “good”
methods. The interest in this result goes beyond this connection however. For
example, consider the case

Xµ :=
{C0 piecewise linear on πµ(Ω)

}
.

For a vertex N in the mesh πµ(Ω), let φN (x) denote the usual piecewise linear
finite element basis function associated with that vertex. Then,

X = XH = span
{
φN (x) : all vertices N ∈ πH(Ω)

}3
,

while the discrete model of the fluctuations is

X′
b := span

{
φN (x) : all vertices N ∈ πh(Ω), N /∈ πH(Ω)

}
.

Fig. 11.1. Light nodes correspond to a velocity fluctuation model which is nonzero
on element edges
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In 2D, this is illustrated in Fig. 11.1. It is clear that the model for the fluctua-
tions allows them to be nonzero across mesh cells in πH(Ω). Thus, fluctuations
can move.

The secret to the computational feasibility of this choice is that the de-
formation of the means do not communicate across edges in πH(Ω). The
fluctuations’ effects on means can be evaluated via:

(νT∇s(uh)′,∇s(vh)′) = (νT∇suh,∇svh) − (νT PH(∇suh), PH(∇svh)).

Alternate Formulations

By the Helmholtz decomposition (see p. 41), stabilization of ∇uh is accom-
plished if we can stabilize ∇ · uh and ∇× uh. Now ∇ · uh is (approximately)
zero and can be consistently stabilized by a least squares term

α(∇ · uh,∇ · vh).

Furthermore, the other contribution to ∇uh,

ωh := ∇× uh

has one dimension less than ∇uh. Thus, we can modify the stabilization to
reduce the overall storage and computational effort as follows: choose a coarse
mesh, discontinuous discrete vorticity space LH , scalar in 2D and vector in
3D:

LH ⊂ L2(Ω) in 2D, LH ⊂ [L2(Ω)]3 in 3D.

Adding multiscale stabilization of ∇× uh and consistent least squares stabi-
lization of ∇ · uh gives the method: find uh : [0, T ] → Xh, ph : (0, T ] → Qh,
and ωH : [0, T ] → LH satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uh
t ,vh) + α1(h)(∇ · uh

t ,∇ · vh) + b(uh,uh,vh) + a(uh,vh)
+α2(h)(∇ · uh,∇ · vh) − (ph,∇ · vh) + (qh,∇ · uh) + (νT∇× uh,∇× vh)

−(νT ωH ,∇× vh) = (f ,vh), ∀vh ∈ Xh, qh ∈ Qh,

(ωH −∇× uh, �H) = 0, ∀ �H ∈ LH .

11.7 Conclusions

Our goals in writing this chapter were two-fold: first, we briefly described the
variational formulation and some of the corresponding numerical methods
that are used in the numerical experiments described in Chap. 12. Second, we
tried to give the reader a glimpse of the numerous challenges in the numerical
analysis of LES, where the study of classic topics such as consistency, stability,
and convergence of the LES discretization are still at an initial stage. Only the
first few steps along these lines have been made, some of which are presented
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in the exquisite monograph of John [175]. Many open questions (and thus
research opportunities!) still remain.

A rigorous numerical analysis for the LES discretization is urgently needed.
This could help bring LES to a new level of robustness and universality. For
example, the relationship between the filter radius δ and the mesh-size h
is an important challenge. Currently, however, the “solution” to this chal-
lenge is based on heuristics coming from years of practical experience with
LES discretizations. The most popular choice is a relationship of the form
δ = C h, where the usual value for the proportionality constant C is 2. The
resulting LES discretizations, however, are very sensitive to the proportion-
ality constant and the numerical method used. This is a clear indication that
a rigorous numerical analysis to elucidate the relationship between δ and h is
urgently needed!

We ended this chapter with two sections devoted to the Variational Mul-
tiscale Method (VMM) of Hughes and his collaborators [160, 161, 162] and
one related approach of Layton [204]. This relatively new approach represents
an exciting research area where numerical analysis can contribute. Indeed,
because of the VMM’s variational formulation, a thorough numerical analysis
could yield new insight into classic LES challenges such as scale-separation
and closure modeling.
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Test Problems for LES

12.1 General Comments

Comparison of numerical simulations with physical experiments is an essential
test for assessing the quality of an LES model. Numerical simulations are,
however, demanding to perform and, once done, it is still nontrivial to extract
useful information about an LES model or to make comparisons between LES
models.

First, these simulations usually require a large amount of computer mem-
ory and time. Since each LES model should be tested on as many types of
flows as possible, both memory and speed of execution become critical fac-
tors. Thus, it is preferable that the underlying code be parallel, and that we
have access to a powerful parallel machine. We must also have a large enough
storage capacity for the output files. These two practical issues are often bot-
tlenecks in turbulent flow calculations, and should be considered carefully
when starting LES model validation and testing.

Second, the numerical method underlying the code should be carefully
assessed. Since we are testing subtle effects in the energy balance, it is easy
for model effects to be masked by discretization errors. It is very important
that we use a stable and accurate method which adds as little as possible
(ideally none at all!) numerical dissipation and dispersion to the LES model.
This apparently simple requirement is a very challenging task. A better un-
derstanding of the interplay between numerical discretizations and the LES
models used is needed. This understanding is growing very slowly in LES, but
it is growing!

Third, the numerical simulation should replicate (or be as close as possi-
ble to) an actual physical experiment. There are relatively few such clear cut
experiments in turbulence and the data needed for a corresponding numerical
simulation is often incomplete. The reason for this is two-fold: (i) physical
experiments for turbulent flows are very challenging (LES, and numerical
simulations in general, were designed as an alternative), and (ii) physical ex-
periments in a simple enough setting (geometry, complexity), amenable to
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numerical simulations by LES are scarce and always include noise from many
sources.

Fourth, we have to monitor meaningful quantities. For example, for the
first steps in computational experiments, statistics of flow variables are pre-
ferred to the flow variables themselves. The goal of LES is to predict accurately
pointwise values of the flow’s large scales. However, these are very difficult to
validate. Statistics of turbulent quantities are easier to evaluate and more sta-
ble to all the uncertainties in turbulent flow calculations. Clearly, a simulation
being qualitatively correct (i.e. matching the correct statistics) is a necessary
step to it being quantitatively accurate (matching point values as in, e.g.
||u − wh||). In general, conclusions on the quality of the LES model based
on what happens at a given time and location in the physical domain can be
very elusive and uncertain.

We illustrate all these challenges and some possible answers by presenting
two of the most popular test cases for the validation and testing of LES:

• turbulent channel flow;
• decay of free isotropic homogeneous turbulence.

We will center most of our discussion around turbulent channel flow, since this
test problem involves one of the main challenges in turbulent flow simulations,
interaction with solid walls (described in Part IV). For turbulent channel flow,
we will carefully present many of the main challenges in the validation and
testing of LES, such as experimental setting, essential flow parameters, initial
conditions, numerical method, and statistics collected. We will also illustrate
the entire discussion with LES runs for some of the LES models described
in the book: the Smagorinsky model with Van Driest damping (12.11), the
Gradient model (12.9), and the Rational LES model (12.10).

Although these two tests are the most popular test problems for the vali-
dation and testing of LES, there are many other interesting, challenging test
cases, such as anisotropic homogeneous turbulence [14], the round jet [258],
the plane mixing layer [258, 173, 175, 176, 243],the backward facing step [135],
lid-driven cavity flow [319, 169], and the square-section cylinder [264]. An ex-
cellent presentation of some such test cases can be found in Chap. 11 of the
exquisite monograph by Sagaut [267] or in Pope [258]. Each careful test and
comparison increases our understanding of the relative strengths and (more
importantly) weaknesses of LES models.

12.2 Turbulent Channel Flows

Many turbulent flows are (partly) bounded by one or more solid surfaces:
flows through pipes and ducts, flows around aircraft and ships’ hulls, and
flows in the environment such as the atmospheric boundary layer and the
flow of rivers. We present LES simulations for one of the simplest wall flows,
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turbulent channel flow. Most of the results presented in this section appeared
in [165, 166, 106].

12.2.1 Computational Setting

3D channel flow (Fig. 12.1) is one of the most popular test problems for the
investigation of wall bounded turbulent flows. It was pioneered as an LES test
problem by Moin and Kim [240, 189].

The reason for its popularity is two-fold:
First, wall bounded turbulent flows are very challenging. The complex

phenomena that take place in the vicinity of the solid surface are not fully
understood, and their incorporation in the LES model is regarded as a central
problem of LES. This is one of the reasons researchers in LES often consider
the computational domain periodic in two directions and bounded just in the
third direction. It should be pointed out that there is no physical support
for this computational setting: designing a physical experiment with peri-
odic boundaries is impossible. Great care has to be taken in specifying the
dimensions of the computational domain in the two periodic directions: the
dimensions of the channel in the x and z directions have to be chosen large
enough to prevent these simple but artificial boundary conditions from seri-
ously influencing the results. For a more detailed discussion of the choice of
the computational domain based on the two-point correlation measurements
of Comte-Bellot, the reader is referred to Sect. 3 of the pioneering paper by
Moin and Kim [240].

The second reason for the popularity of periodic boundary conditions
is their computational advantage: one can use a numerical scheme employ-
ing spectral or pseudo-spectral methods in the two periodic directions. This
greatly reduces the computational time (one of the major bottlenecks in run-
ning LES simulations) and increases the accuracy and reliability of the sim-
ulation over lower order methods. Again, the reader is referred to Sect. 5
of the paper by Moin and Kim [240] for more details on such a numerical
implementation.

Fig. 12.1. Problem setup for the channel flow
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Table 12.1. Dimensions of the computational domain

Nominal Reτ Lx × Ly × Lz

180 4π × 2 × 4
3
π

395 2π × 2 × π

12.2.2 Definition of Reτ

As a benchmark for our LES simulations we used the fine DNS of Moser, Kim,
and Mansour [242]. In comparing results of our numerical simulations, great
care needs to be taken in simulating the same flows. For turbulent channel flow
simulations, one important parameter is Reτ , the Reynolds number based on
the wall shear velocity, uτ . In comparing results for two different simulations
of the same flow, we need to make sure that Reτ is the same in both flows.
This is an important issue, and we need to explain it in more detail. Most
of the discussion in this subsection is based on the exquisite presentation of
turbulent channel flows in Sect. 7.1.3 of Pope [258].

In specifying a Reynolds number of a given flow, three parameters are
needed: a characteristic length L, a characteristic velocity V , and the kine-
matic viscosity of the flow ν. Once these parameters are specified, the Reynolds
number is computed via

Re =
V L

ν
. (12.1)

The parameters L and ν are specified in a straightforward manner: L = H ,
where H is half of the height of the channel, and ν is a parameter specific to
the fluid in the channel.

The choice for the characteristic velocity V is not that straightforward
and several are possible. In order to present the most popular choice for V
in channel flow simulations, we need to introduce an important wall quantity,
the wall shear stress τw. First, we note that the channel flow that we study is
fully developed, statistically steady (we will explain these two concepts in more
detail in the next two subsections), and statistically one-dimensional, with
velocity statistics depending only on the vertical (wall-normal) coordinate y.
Then, by using the mean continuity and the mean momentum equations, one
can show (see Pope [258], pp. 266, 267) that the total shear stress

τ(y) = ρ ν
d〈u〉
dy

− ρ 〈u′v′〉 (12.2)

satisfies

τ(y) = τw

(
1 − y

H

)
, (12.3)
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where

τw = τ(0) (12.4)

is the wall shear stress. In (12.2), ρ is the density of the fluid, and 〈·〉 denotes
ensemble averaging, defined below (see [258]):

Definition 12.1. Let U denote a component of velocity at a given position
and time in a repeatable turbulent flow experiment, and let U (i) denote U
in the i-th repetition. Each repetition is performed under the same nominal
conditions, and there is no dependence between different repetitions. Thus, the
random variables {U (i)}i=1,N are independent and identically distributed. The
ensemble average (over N repetitions) is defined by

〈U〉 :=
1
N

N∑
i=1

U (i).

Note that, since u = 0 at the wall (no-slip boundary conditions), 〈u′v′〉 = 0.
Thus, (12.2) and (12.4) yield

τw = τ(0) = ρ ν
d〈u〉
dy

∣∣∣∣
y=0

> 0.

For turbulent channel flow simulations, the usual choice in (12.1) is V = uτ ,
where uτ is the wall shear velocity depending on the wall shear stress τw, and
the density of the fluid, ρ.

Definition 12.2. The wall shear velocity uτ is defined as

uτ =
√

τw

ρ
. (12.5)

It is easy to check that uτ has units of velocity and thus it is an acceptable
choice of V in (12.1). The reason for choosing the wall shear velocity as char-
acteristic velocity in (12.1) is that most of the turbulence in channel flow is
due to the interaction of the flow with the solid boundary. In fact, choos-
ing the characteristic velocity V the velocity of the flow away from the solid
boundaries, can be misleading.

For example, in Fig. 12.2, the magnitude of the velocity in the center of
the channel in the first flow (Fig. 12.2, top) is equal to that of the velocity
near the wall in the second flow (Fig. 12.2, bottom). The Reynolds numbers
(12.1) calculated with these two characteristic velocities would be the same.
However, the two flows are fundamentally different ! The first one is a laminar
flow, whereas the second one is turbulent. Since we are studying turbulence,
we should use a measure of V that will distinguish between these two cases,
such as uτ . In Table 12.2, for the same turbulent channel flow, we present the
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Fig. 12.2. Streamwise (x-) velocity profile: (top) laminar flow; (bottom) turbulent
flow

Reynolds number based on the wall shear velocity uτ and the corresponding
Reynolds number based on the bulk velocity

um =
1
H

∫ H

0

〈u〉dy.

Table 12.2. Same channel flow, Reynolds number based on: wall shear velocity uτ

(left); bulk velocity um (right)

Reτ Rem

180 5,600
395 13,750

12.2.3 Initial Conditions

Another essential issue in LES is the specification of initial conditions. The tur-
bulent channel flow problem is a test of fully developed turbulence: in a physical
experiment, near the entry of the channel (x = 0) there is a flow-development
region. We investigate, however, the fully developed region (large x) in which
velocity statistics no longer vary with x.

Thus, the initial flow for our LES simulations needs to be turbulent. There
are a couple of approaches for obtaining turbulent initial flow fields.
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The first and easiest approach is to take a flow field from a previous
LES simulation for the same setting at a possible lower Reτ (there are some
databases with such flow fields). This flow field is then integrated over time at
the actual Reτ until a statistically steady state is reached, that is, the statistics
of the flow variables do not vary over time. We will explain in more detail the
way we collect statistics and how we identify the statistically steady state in
the next subsection.

The second approach is to start with a laminar flow, impose a certain set of
disturbances on it, and integrate it over time until it transitions to a turbulent
flow. This approach, however, is usually computationally intensive: the time
to transition to turbulence is very long.

In the results for the LES simulations presented in this chapter, we used
both methods. First, the initial conditions for the Reτ = 180 simulations were
obtained by superimposing some perturbations (a 2D Tollmien–Schlichting
(TS) mode of 2% amplitude and a 3D TS mode of 1% amplitude, see again
Moin and Kim [240, 189] for details) on a parabolic mean flow (Poiseuille
flow). We then integrated the flow for a long time (approximately 200 H/uτ)
on a finer mesh. The final field file was further integrated on the actual coarse
LES mesh for approximately 50 H/uτ to obtain the initial condition for all
Reτ = 180 simulations.

The initial condition for the Reτ = 395 case was obtained as follows:
we started with a flow field corresponding to an Reτ = 180 simulation, and
we integrated it on a finer mesh for a long time (approximately 50 H/uτ ).
Then, we integrated the resulting flow on the actual coarser LES mesh and
for Reτ = 395 for another 40 H/uτ , and the final flow field was used as initial
condition for all simulations.

12.2.4 Statistics

Since there is no interaction between the flow and the exterior, by keeping
a constant mass flux through the channel, the flow will evolve to a state in
which the statistics for all quantities of interest will be constant. It should be
emphasized that the variables of interest (like the velocity of the flow) will
vary in time – the statistics of these variables, however, will remain constant.
Thus, while still considering a turbulent flow, we can monitor statistics of the
flow variables. These statistics are considered more reliable than instantaneous
values of the flow variables.

In the numerical results presented in this chapter, for all the LES models
we tested and for both Reτ = 180 and Reτ = 395, the flow was integrated
further over time until the statistically steady state was reached (for approxi-
mately 15 H/uτ ). The statistically steady state was identified by a linear total
shear stress profile (see Fig. 12.3). For details on why the linear shear stress
profile is an indicator of statistically steady state, the reader is again referred
to Pope [258]. The statistics were then collected over another 5 H/uτ and
contained samples taken after each time step (∆t = 0.0002 for Reτ = 180 and
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∆t = 0.00025 for Reτ = 395). We also averaged over the two halves of the
channel, to increase the reliability of the statistical sample.

The numerical results include plots of the following time- and plane-
averaged (denoted by 〈·〉) quantities normalized by the computed uτ : the mean
streamwise (x-) velocity, the x, y-component of the Reynolds stress, and the
root mean square (rms) values of the streamwise (x-), wall-normal (y-), and
spanwise (z-) velocity fluctuations. We computed these statistics following the
approach in [315], where it was proved that the best way to reconstruct the
Reynolds stresses from LES is

RDNS
ij ≈ RLES

ij + 〈AM

ij 〉, (12.6)

where RDNS
ij ≡ 〈uiuj〉−〈ui〉〈uj〉 are the Reynolds stresses from the fine DNS

in [242], RLES
ij ≡ 〈uiuj〉 − 〈ui〉〈uj〉 are the Reynolds stresses coresponding

to the dynamics of the LES field, and 〈AM

ij 〉 are the averaged values of the
modeled subfilter-scale stresses 〈τij〉 = 〈uiuj − uiuj〉.

As pointed out in [315], the Reynolds stresses from an LES can only be
compared with those from a DNS by also taking into account the significant
contribution from the averaged subfilter-scale stresses. Since we include results
for the Smagorinsky model with Van Driest damping, we need to be careful

Fig. 12.3. Linear total shear stress profile for Reτ = 180
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with the reconstruction of the diagonal Reynolds stresses (the rms turbulence
intensities). Specifically, for this eddy viscosity model, only the anisotropic
part of RDNS

ij can be reconstructed (and thus compared with DNS):

R ∗DNS
ii ≈ R ∗LES

ii + 〈A ∗M

ii 〉, (12.7)

where

R ∗DNS
ii ≡ 〈u′

iu
′
i〉 −

1
3

3∑
k=1

〈u′
ku′

k〉 = RDNS
ii − 1

3

3∑
k=1

RDNS
kk

R ∗LES
ii ≡ RLES

ii − 1
3

3∑
k=1

RLES
kk ,

A
∗
ii ≡ Aii − 1

3

3∑
k=1

Akk,

and A
∗M

ii is modeling A
∗
ii.

The reconstruction of the off-diagonal stresses Rxy is straightforward:

RDNS
xy ≈ RLES

xy + 〈A ∗M

xy 〉, (12.8)

since 〈A ∗M

xy 〉 = 〈AM

xy 〉.
In computing Rxy, u∗

rms, v∗rms, andw∗
rms, for the three LES models, we

used formulas (12.6)–(12.8). These results were then compared with the cor-
responding ones in [242].

12.2.5 LES Models Tested

In Chap. 7, we presented the Gradient model

τ = uuT − uuT ≈ δ2

2γ
∇u∇uT , (12.9)

where δ is the filter radius, γ is a shape parameter in the definition of the
Gaussian filter, and

(∇u∇uT )i,j =
d∑

l=1

∂ui

∂xl

∂uj

∂xl
,

and the Rational LES model

τ =

[(
− δ2

4γ
∆ + �

)−1 (
δ2

2γ
∇u∇uT

)]
. (12.10)
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These two models are subfilter-scale (SFS) models: they aim at computing
an improved approximation of the stress tensor τ = uuT − uuT by replac-
ing the unknown unfiltered variables with approximately deconvolved filtered
variables [276, 130, 194, 93, 92, 285, 289, 290].

The gradient (also called nonlinear, or tensor-diffusivity) model, has been
used in numerous studies [212, 65, 55, 41, 316, 309, 223, 7, 182]. In all these
numerical tests, the Gradient model (12.9) was found to be very unstable.
To stabilize the Gradient model, Clark, Ferziger, and Reynolds [65] combined
it with a Smagorinsky term, but the resulting mixed model inherited the
excessive dissipation of the Smagorinsky model. A different approach was
proposed by Liu et al. [223], who supplied the Gradient model with a “limiter”;
this clipping procedure ensures that the model dissipates energy from large
to small scales. This approach was also used in [85, 78, 77].

In this section, we present a comparison of

• the RLES model (12.10);
• the Gradient model (12.9);
• the Smagorinsky model with Van Driest damping (12.11);

in the numerical simulation of 3D turbulent channel flows at Reynolds num-
bers based on the wall shear velocity Reτ = 180 and Reτ = 395.

To give a measure of the success of the first two SFS models, we compare
them with a classical eddy viscosity model, the Smagorinsky model with Van
Driest damping [302] (see Chap. 3)

τ = −(CS δ (1 − exp(−y+/A))2 ‖∇su‖F ∇su, (12.11)

where ∇su := 1
2 (∇u + ∇uT ) is the deformation tensor of the filtered field,

‖ · ‖F is the Frobenius norm, CS ≈ 0.17 is the Smagorinsky constant, y+ is
the nondimensional distance from the wall, H = 1 is the channel half-width,
uτ is the wall shear velocity, and A = 25 is the Van Driest constant [302].

In (12.11), we encountered the variable y with a superscript +. Since this
is an important quantity in channel flow simulations, we define it below.

Definition 12.3. The distance from the wall measured in wall units is defined
by

y+ =
uτ (H − |y|)

ν
, (12.12)

and determines the relative importance of viscous and turbulent phenomena.

The numerical results of our comparison were presented in [106, 165], and
they shed light on two important issues:

• a comparison between the Gradient model (12.9) and the RLES model
(12.10) as subfilter-scale (SFS) models;

• a comparison of these two SFS models with a classical eddy viscosity
model, the Smagorinsky model with Van Driest damping (12.11).
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12.2.6 Numerical Method and Numerical Setting

The numerical simulations were performed by using a spectral element code
based on the lPN − lPN−2 velocity and pressure spaces introduced by Maday
and Patera [224].

The domain was decomposed into spectral elements, as shown in Fig. 12.4.
In an attempt to keep the numerical setting as close as possible to that used
for our benchmark results (the fine DNS in [242]), the mesh spacing in the
wall-normal direction (y) was chosen to be roughly equivalent to a Chebychev
distribution having the same number of points.

The velocity is continuous across element interfaces and is represented
by Nth-order tensor-product Lagrange polynomials based on the Gauss–
Lobatto–Legendre (GLL) points. The pressure is discontinuous and is repre-
sented by tensor-product polynomials of degree N–2. Time-stepping is based
on operator-splitting of the discrete system, which leads to separate convec-
tive, viscous, and pressure subproblems without the need for ad hoc pressure
boundary conditions. A filter, which removes 2%–5% of the highest velocity
mode, is used to stabilize the Galerkin formulation [108]; the filter does not
compromise the spectral accuracy. Details of the discretization and solution
algorithm are given in [105, 107].

As we have seen in Sect. 12.2.1, in comparing results for the numerical
simulation of turbulent flows, one needs to ensure that the flow parameters
are the same. In particular, for channel flow simulation, one must evolve the
flow so that the wall shear velocity uτ (and thus, the corresponding Reτ ) be
kept close to the desired value. The most popular approaches in ensuring this
in channel flow simulations are

 X

 Y

 Z

 X

 Y

 Z

Fig. 12.4. Spectral element meshes: Reτ = 180 and Reτ = 395
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• by enforcing a constant mass flux through the channel;
• by enforcing a constant pressure gradient through the channel.

These approaches adjust dynamically the forcing term so that the mass flux
and the pressure gradient, respectively, are constant.

In our numerical simulations we chose the former: the forcing term that
drives the flow was adjusted dynamically to maintain a constant mass flux
through the channel. Thus, in our simulations the bulk velocity um was fixed
to match the corresponding one in [242] (see Table 12.3), and the wall shear
velocity uτ was a result of the simulations. Table 12.3 presents the actual
values of Reτ corresponding to the wall shear velocity uτ computed for all
three numerical tests and two nominal Reynolds numbers. We note that the
friction velocity uτ is within 1%–2% of the nominal value, and, as a result, so
is the actual Reτ .

Table 12.3. Computed uτ and Reτ

Fixed Um Nominal Reτ Case Computed uτ Computed Reτ

15.63 180 RLES 0.9879448 177.8352
gradient 0.9890118 178.0222

Smagorinsky 0.9917144 178.5120
with Van Driest damping

17.54 395 RLES 1.001025319 395.4071960
gradient 1.005021334 396.9859924

Smagorinsky 0.9974176884 393.9718933
with Van Driest damping

The filter width δ was computed by using the most popular formula
δ = 3

√
∆x ∆z ∆y(y), where ∆x and ∆z are the largest spaces between the

Gauss–Lobatto–Legendre (GLL) points in the spectral element in the x and
z directions, respectively, and ∆y(y) is inhomogeneous and is computed as an
interpolation function that is zero at the wall and is twice the normal mesh
size for the elements in the center of the channel. Note that, since we filter
in all three directions, the filter width δ never vanishes away from the wall.
This, however, could be a serious problem for tests in which one filtering di-
rection is discarded; in this case, the LES model vanishes although the other
two directions are poorly resolved. To avoid this difficulty, one should instead
use the anisotropic version of the RLES model (12.10), in which δx, δy, and
δz are all different. The derivation of this anisotropic form of the RLES model
is straightforward and the resulting model remains easy to implement.

We used as a first step the RLES model (12.10) with the inverse operator
equipped with Neumann boundary conditions. This is clearly not the best
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choice, since the subfilter-scale stresses τ = uu − uu modeled by the RLES
model vanish on the boundary if δ = 0 at the wall (which is our case). We
plan to investigate the RLES model with the inverse operator equipped with
homogeneous Dirichlet boundary conditions instead of Neumann boundary
conditions as in the present simulations. These new boundary conditions could
yield better behavior near the wall for the RLES model (12.10).

In our numerical experiments, we considered, as a first step, homogeneous
boundary conditions for all LES models tested. As argued in Part IV, this
is clearly not the right approach, because of its high computational cost and
the commutation error introduced by the fact that differentiation and convo-
lution might not commute for variable filter radius δ (which is our case). We
chose this popular approach, however, because of its simplicity and because
we wanted to focus on the comparison of the RLES and gradient models as
subfilter-scale models. In other words, the boundary conditions might be in-
appropriate, but they are the same for both LES models. Obviously, we plan
to investigate better boundary conditions, such as those indicated in Part IV.

12.2.7 A Posteriori Tests for Reτ = 180

A few words on the terminology are necessary. An a posteriori test is a numer-
ical simulation which employs an actual LES model. In other words, one first
needs to run the simulation with the LES model included in the numerical
method, and only then collect the results. This is in contrast with the a priori
tests, where one uses a data set from a previous DNS calculation, and then
computes the corresponding filtered quantities, without effectively using any
LES model in the numerical simulation.

It should be emphasized that the two approaches yield different results.
The reason is that the flows in the two simulations evolve differently: the
former includes the contribution of the LES model, while the latter is a DNS.
This difference has been noticed time and again in the validation of LES
models. For example, the scale-similarity model of Bardina [13] presented in
Chap. 8 yielded very good results in a priori tests, but performed poorly in
a posteriori tests. Thus, it is imperative to test an LES model in a posteriori
tests in order to assess its performance.

In [165], we ran a posteriori tests for the RLES model (12.10), the Gra-
dient model (12.9), and the Smagorinsky model with Van Driest damping
(12.11). We compared the corresponding results with the fine DNS simulation
of Moser, Kim, and Mansour [242]. Having an extensive database such as that
in [242] makes our task much easier. Without such a database, we would have
had to run extremely long fine DNS tests and collect statistics. Thus, it is
preferable to start with a test problem for which such extensive databases
exist.

Figure 12.5 shows the normalized mean streamwise velocity u+, where
a ”+” superscript denotes the variable in wall-units; note the almost perfect
overlapping of the results corresponding to the models tested. We interpret
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this behavior as a measure of our success in enforcing a constant mass flux
through the channel. Since we have only two mesh points with y+ ≤ 10 away
from the wall, the plotting by linear interpolation between these two points
produces inadequate results. The mean streamwise velocity u+ at these points
is, however, very close to that in the fine DNS.

Fig. 12.5. Mean streamwise velocity, Reτ = 180. We compared the RLES model
(12.10), the Gradient model (12.9), and the Smagorinsky model with Van Driest
damping (12.11) with the fine DNS of Moser, Kim, and Mansour [242]

Figure 12.6 presents the normalized x, y-component of the Reynolds stress,
Rxy, computed by using (12.8). Note that Rxy includes contributions from the
subgrid-scale stresses, which, in turn, include terms containing the gradient
of the computed velocity. Since this gradient is not continuous across the
spectral elements, we obtain spikes in the Gradient (12.9) and Smagorinsky
with Van Driest damping models. The inverse operator in the RLES model
(12.10) has a smoothing effect on the subgrid-scale stress tensor and attenuates
these spikes. This behavior is apparent in all the other plots for the Reynolds
stresses. The Rxy for the RLES model (12.10) is better than that for the
Gradient model (12.9) (there are no spikes), with the exception of the near-
wall region; here, the inverse (smoothing) operator equipped with Neumann
boundary conditions introduces a nonzero Rxy for the RLES model (12.10).
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Nevertheless, both the RLES (12.10) and the Gradient (12.9) model yield
much better results for Rxy than the Smagorinsky model with Van Driest
damping; the latter performs poorly.

Fig. 12.6. The x, y-component of the Reynolds stress, Reτ = 180. We compared the
RLES model (12.10), the Gradient model (12.9), and the Smagorinsky model with
Van Driest damping (12.11) with the fine DNS of Moser, Kim, and Mansour [242]

The situation is completely different for the diagonal stresses (rms turbu-
lence intensities) in Figs. 12.7–12.9. Here, the Smagorinsky model with Van
Driest damping performs significantly better than both the RLES (12.10)
and the gradient (12.9) models. As for the Rxy, the inverse operator in the
RLES model has a smoothing effect and attenuates the spikes in the diago-
nal Reynolds stresses of the Gradient model (12.9), yielding improved results,
with the exception of the near-wall region where it introduces a nonzero diag-
onal Reynolds stress. We also note that the first spike in the rms turbulence
intensities for Gradient model (12.9) away from the wall is not at the spectral
element interface. Nevertheless, the smoothing operator in the RLES model
(12.10) attenuates it significantly. The inverse operator is also responsible for
the much increased numerical stability of the RLES model (12.10) over the
Gradient model (12.9). In order to prevent numerical simulations with the
Gradient model from blowing up, we had to use a very small time-step; the
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Fig. 12.7. Rms values of streamwise velocity fluctuations, Reτ = 180. We com-
pared the RLES model (12.10), the Gradient model (12.9), and the Smagorinsky
model with Van Driest damping (12.11) with the fine DNS of Moser, Kim, and
Mansour [242]

simulations with the RLES model (12.10) ran with much larger time-steps.
(To collect statistics, however, we ran the two LES models with the same
time-step.)

12.2.8 A Posteriori Tests for Reτ = 395

In [165], we ran simulations with all three LES models for Reτ = 395, and
compared our results with the fine DNS in [242]. Again, as in the Reτ =
180 case, the normalized mean streamwise velocity profiles in Fig. 12.10 are
practically identical; this time, however, they do not overlap the profiles for
the fine DNS. Nevertheless, the mean flows are the same, and this is supported
by the fact that the models underpredict the correct value near the wall but
overpredict it away from the wall. The inadequate behavior near the wall is
due to the plotting, as in the Reτ = 180 case (we used linear interpolation
for the two mesh points with y+ ≤ 10 away from the wall). In fact, u+ at
these two mesh points compares very well with the fine DNS results in [242].
In the buffer and log layers the three LES models deviate from the correct
DNS results, but they perform well at the center of the channel.
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Fig. 12.8. Rms values of wall-normal velocity fluctuations, Reτ = 180. We com-
pared the RLES model (12.10), the Gradient model (12.9), and the Smagorinsky
model with Van Driest damping (12.11) with the fine DNS of Moser, Kim, and
Mansour [242]

The results for the normalized Reynolds stresses in Figs. 12.11–12.14 par-
allel the corresponding ones for the Reτ = 180 case. The RLES model (12.10)
performs better than the Gradient model (12.9) (the smoothing operator
eliminates the spikes), with the exception of the near-wall region, where the
smoothing operator introduces a nonzero value.

Both the RLES (12.10) and the Gradient (12.9) models yield much better
results for the off-diagonal Reynolds stress tensor Rxy than the Smagorinsky
model with Van Driest damping (Fig. 12.11).

However, the Smagorinsky model with Van Driest damping performs much
better than both the RLES (12.10) and the Gradient (12.9) models in pre-
dicting the diagonal stresses (Figs. 12.12–12.14), with the exception of Rzz in
Fig. 12.14, where the improvement is not that dramatic.

Again, as in the Reτ = 180 case, the RLES model (12.10) is much more
stable numerically than the Gradient model.
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Fig. 12.9. Rms values of spanwise velocity fluctuations, Reτ = 180. We compared
the RLES model (12.10), the Gradient model (12.9), and the Smagorinsky model
with Van Driest damping (12.11) with the fine DNS of Moser, Kim, and Man-
sour [242]

12.2.9 Backscatter in the Rational LES Model

We close this section on the numerical simulation of turbulent channel flow
with a very interesting and important phenomenon, backscatter. A detailed
description of backscatter and its relationship to the concept of energy cascade
is given in Sect. 3.5. Here we present numerical results for backscatter in tur-
bulent channel flow simulations. The results in this subsection were published
in [166].

Based on the concept of energy cascade (see Fig. 3.1), most of the com-
monly used LES models assume that the essential function of the unresolved
(modeled) scales is to remove energy from the large scales and dissipate it
through the action of viscous forces. While, on average, energy is transferred
from the large to the small scales (“forward scatter”), it has been recognized
that the inverse transfer of energy from small to large scales (“backscatter”)
may be quite significant (see Fig. 3.3) and should be included in the LES
model. Indeed, Piomelli et al. [254] performed DNS of transitional and turbu-
lent channel flow and compressible isotropic turbulence. In all flows consid-
ered, approximately 50% of the grid points experienced backscatter.
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Fig. 12.10. Mean streamwise velocity, Reτ = 395. We compared the RLES model
(12.10), the Gradient model (12.9), and the Smagorinsky model with Van Driest
damping (12.11) with the fine DNS of Moser, Kim, and Mansour [242]

To illustrate the importance of including backscatter in the LES model,
note that the Smagorinsky model [277], the most popular eddy viscos-
ity model, is purely dissipative and cannot predict backscatter. To include
backscatter, the Smagorinsky model is usually used in the dynamical frame-
work of Germano et al. [129]. This approach may, however, lead to numerical
instabilities. The reason could be the fact that backscatter is not introduced
in a natural way: we start with a purely dissipative model (the Smagorinsky
model), and through some clever manipulations, we get a model that could
yield backscatter (the dynamic subgrid-scale model).

A few LES models introduce backscatter in a natural way. We present nu-
merical investigation of backscatter in two such LES models, the RLES (12.10)
and the Gradient (12.9) LES models applied to the numerical simulation of
turbulent channel flows at Reτ = 180 and Reτ = 395.

We collected statistics for SGS dissipation, forward scatter and backscat-
ter. (We define these quantities below.) We started with field files correspond-
ing to LES simulations in [165], which had already reached a statistically
steady state. We then integrated the flow further over time and collected
statistics for the above three quantities, which were averaged over time and



314 12 Test Problems for LES

Fig. 12.11. The x, y-component of the Reynolds stress, Reτ = 395. We compared
the RLES model (12.10), the Gradient model (12.9), and the Smagorinsky model
with Van Driest damping (12.11) with the fine DNS of Moser, Kim, and Man-
sour [242]

homogeneous directions (streamwise and spanwise). All three statistics were
normalized by u3

τ , where uτ is the computed wall-shear velocity, which was
found to be within 1%–2% of the nominal value.

The model subgrid-scale dissipation was computed as

εSGS := τ ij (∇su)ij , (12.13)

where (∇su)ij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
represents the large-scale strain-rate tensor,

and τ = uu − uu is the subfilter-scale stress tensor. To collect statistics of
εSGS, at each coordinate y in the computational domain, we averaged over
the horizontal directions of homogeneity and in time.

The model subgrid-scale dissipation εSGS represents the energy transfer
between the resolved and the unresolved (subfilter-scale) scales. If εSGS is
negative, energy is transferred from large scales to small scales (forward scat-
ter); if εSGS is positive, energy is transferred from small scales to large scales
(backscatter). We denote the forward scatter by ε+ = 1

2 (εSGS + |εSGS|) and
the backscatter by ε− = 1

2 (εSGS − |εSGS|).
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Fig. 12.12. Rms values of streamwise velocity fluctuations, Reτ = 395. We com-
pared the RLES model (12.10), the Gradient model (12.9), and the Smagorinsky
model with Van Driest damping (12.11) with the fine DNS of Moser, Kim, and
Mansour [242]

12.2.10 Numerical Results

In the Reτ = 180 case, the model subgrid-scale dissipation εSGS in Fig. 12.15
shows the correct behavior for the RLES model (12.10): the forward scatter
is dominant throughout the channel, with a peak near the wall. This behavior
can be noticed in the DNS results in [93] (Fig. 8a, p. 2159).

The correct εSGS is quite challenging to capture in LES: the velocity esti-
mation model in [93] (Fig. 8a, p. 2159) underpredicts the correct peak value of
εSGS. The variational multiscale approach in [162] underpredicts significantly
the correct peak value for εSGS (Fig. 14, p. 1791). The εSGS corresponding to
the RLES model in Fig. 12.15 performs better than both previous methods;
the RLES model actually performs similarly to the classical eddy viscosity
models (the Smagorinsky model in [93] and the Smagorinsky model with Van
Driest damping in [162]). This is quite remarkable for a non eddy viscosity
model such as the RLES model, which introduces a significant amount of
backscatter.

The Gradient model (12.9) has an incorrect behavior: it starts with a huge
amount of backscatter near the wall and then reaches the peak value of forward
scatter away from the correct location [93].
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Fig. 12.13. Rms values of wall-normal velocity fluctuations, Reτ = 395. We com-
pared the RLES model (12.10), the Gradient model (12.9), and the Smagorinsky
model with Van Driest damping (12.11) with the fine DNS of Moser, Kim, and
Mansour [242]

The forward scatter and backscatter in Fig. 12.15 illustrate the smoothing
character of the inverse filtering in the RLES model (12.10): the “spikes”
seen in the Gradient model are damped in the RLES model. This process
has a positive effect on the numerical stability of the RLES model. The huge
amount of forward scatter and backscatter introduced by the gradient model
in the near-wall region is responsible for the unstable behavior in wall-bounded
flow simulations [316].

For both LES models, the backscatter and the forward scatter contribu-
tions to the SGS dissipation were comparable, and each was much larger than
the total SGS dissipation. This behavior was also noticed in [254].

In the Reτ = 395 case, the SGS dissipation corresponding to the RLES
model (12.10) in Fig. 12.16 is much less than that for the Gradient model
(12.9); the latter seems exaggerated for this Reynolds number. The forward
and backscatter for the RLES model are, however, larger than those for the
Gradient model. This fact does not contradict the observation about the SGS
dissipation, since εSGS is the sum of the forward and backscatter. We also need
to keep in mind that, although both LES models are started from the same
initial conditions, the corresponding flows evolve in time differently. Thus, in
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Fig. 12.14. Rms values of spanwise velocity fluctuations, Reτ = 395. We com-
pared the RLES model (12.10), the Gradient model (12.9), and the Smagorinsky
model with Van Driest damping (12.11) with the fine DNS of Moser, Kim, and
Mansour [242]

the numerical simulations, the SFS stress tensor τ in the RLES model is not
simply the inverse operator in (12.10) applied to the SFS stress tensor τ in
the Gradient model.

As in the Reτ = 180 case, for both LES models the backscatter and the
forward scatter contributions were comparable, and each was much larger than
the total SGS dissipation [254].

We note the nonphysical spikes corresponding to the Gradient model (12.9)
in all three quantities monitored: εSGS, ε−, and ε+. These spikes are located
exactly at the interfaces between adjacent spectral elements. This behavior
is natural, since the SGS tensor τ for the Gradient model (12.9) contains
products of gradients of the computed velocity (see (12.9)). The RLES model,
on the other hand, smooths out these spikes through its inverse operator; this
smoothing makes the RLES model more stable numerically. Further investi-
gation of these issues is necessary.
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Fig. 12.15. Reτ = 180, the RLES model (12.10) and the Gradient model (12.9):
SGS dissipation (top); forward scatter (bottom, left); backscatter (bottom, right)

12.2.11 Summary of Results

The RLES model (12.10) yielded better results than the Gradient model (12.9)
for both Reτ = 180 and Reτ = 395, and for all Reynolds stresses. This was
due to the inverse operator in the RLES model, which had a smoothing effect
over the modeled subfilter-scale stress tensor and eliminated (or attenuated)
the spikes in the Gradient model. The inverse operator, however, introduced
nonzero Reynolds stresses in the near-wall region. The Neumann boundary
conditions need to be replaced by homogeneous boundary conditions, as ar-
gued before.

But the most significant improvement of the RLES model over the Gradi-
ent model is the much increased numerical stability, which is also due to the
smoothing effect of the inverse operator.

The Smagorinsky model with Van Driest damping (12.11) performed worse
than both the RLES and the Gradient models in predicting the off-diagonal
Reynolds stresses, but predicted very accurately the diagonal ones.

We believe that these results for the RLES model are encouraging. They
also support our initial thoughts: the RLES model is an improvement over the
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Fig. 12.16. Reτ = 395, the RLES model (12.10) and the Gradient model (12.9):
SGS dissipation (top); forward scatter (bottom, left); backscatter (bottom, right)

gradient model as a subfilter-scale model. The RLES model is also more stable
numerically because of the additional smoothing operator, and this feature is
manifest for both low (Reτ = 180) and moderate (Reτ = 395) Reynolds
number flows.

However, the RLES model accounts just for the subfilter-scale part of the
stress reconstruction. The information lost at the subgrid-scale level must be
accounted for in a different way, as advocated by Carati et al. [55]. This was
illustrated by the dramatic improvement for the diagonal Reynolds stresses,
for both Reτ = 180 and Reτ = 395, yielded by the Smagorinsky model with
Van Driest damping, a classical eddy viscosity model.

It seems that the RLES model (12.10), although an improvement over the
Gradient model (12.9), should probably be supplemented by an eddy viscosity
mechanism (a mixed model) to be competitive in challenging wall-bounded
turbulent flow simulations. One should investigate this mixed model in more
challenging simulations and compare the results with state-of-the-art LES
models such as the dynamic Smagorinsky model [129] and the variational
multiscale method of Hughes et al. [160, 161, 162].
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Other possible research directions include the study of improved boundary
conditions, the commutation error [136, 133], and the relationship between the
filter radius and the mesh size in a spectral element discretization.

We also gathered statistics for the model SGS dissipation, the forward
scatter, and the backscatter. In the Reτ = 180 case, the RLES model (12.10)
yielded much improved results, closer to the DNS results in [93]. The Gradient
model introduced an unphysical amount of backscatter near the wall, which
made the computations more unstable. In the Reτ = 395 case, the RLES
model’s SGS dissipation was closer to a realistic value. The SGS dissipation
for the Gradient model seemed unrealistically high. The amount of forward
and backscatter was, however, higher for the RLES model. Despite this, the
Gradient model (12.9) was more unstable numerically, as reported in [316].
This issue deserves further investigation.

Both the RLES and the Gradient models introduce backscatter in a nat-
ural way. The Gradient model is unstable in numerical simulations. On the
contrary, the RLES model, through the action of its smoothing filter, makes
the computations much more stable; it can run for thousands of time-steps
without additional numerical stabilization procedures.

As mentioned at the beginning of this chapter, we will not go into great
detail in the presentation of the next test case for LES. We will just point out
the main features and challenges, and direct the interested reader to other
more detailed references.

12.3 A Few Remarks
on Isotropic Homogeneous Turbulence

Isotropic homogeneous turbulence is the simplest turbulence flow on which
LES models can be validated. It has two main advantages: first, the compu-
tational domain is equipped with periodic boundary conditions in all three
directions, and thus the challenge of filtering in the presence of solid bound-
aries (see Part IV) is completely eliminated. Second, one can use pseudo-
spectral methods in all three dimensions, this speeding up considerably the
calculations.

It should be mentioned, however, that success in LES of isotropic homoge-
neous turbulence does not automatically imply success in LES of wall-bounded
flows. This remark is in the same spirit as those made in the Introduction:
to assess the quality of an LES model, one should test the model in as many
different test problems as possible.

The isotropic homogeneous turbulence can be of two types, see Sagaut [267].

• Decay of free isotropic homogeneous turbulence, in which energy is ini-
tially located in a low spectral band, after which the energy cascade sets
in (energy is transferred to smaller and smaller scales until eventually is
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dissipated through viscous effects). While the energy cascade sets in, the
kinetic energy remains constant. After that, the kinetic energy decreases.

• Sustained isotropic homogeneous turbulence, in which the total dissipation
of the kinetic energy is prevented by injecting energy at each time-step.
After a transitory phase, an equilibrium solution (including an inertial
range) sets in.

In this section, we will focus on the decay of free isotropic homogeneous tur-
bulence. In our presentation, we will use Chap. 11 in the unique monograph
of Sagaut [267], Sect. 9.1 in Pope [258], and Scott Collis’ notes [69].

For this test problem, we will not reach the level of detail in the previ-
ous description of turbulent channel flow. Instead, we will try to outline the
features that distinguish this test problem from turbulent channel flow.

12.3.1 Computational Setting

For the numerical simulation of the decay of free isotropic homogeneous tur-
bulence, pseudo-spectral methods are the most popular. For more details on
spectral methods, the reader is referred to the excellent introduction in the
books of Canuto, Hussaini, Quarteroni, and Zang [54], and Peyret [252].

The computational domain is a cubic box of dimension L, where L is large
compared to the integral scales of the turbulence contained in the box. Thus,
we can treat the velocity and pressure as periodic functions and expand them
as truncated three-dimensional Fourier series:

ul(x) =
N/2−1∑

k1=−N/2

N/2−1∑
k2=−N/2

N/2−1∑
k3=−N/2

ûl(k) exp
[
i
2π

L
k · x

]
, for l = 1, 2, 3,

p(x) =
N/2−1∑

k1=−N/2

N/2−1∑
k2=−N/2

N/2−1∑
k3=−N/2

p̂(k) exp
[
i
2π

L
k · x

]
.

The efficient way of calculating the Fourier coefficients is by using the Fast
Fourier Transform (FFT), whose computational cost is O(N log2(N)) (for
details see [54]).

Inserting these truncated Fourier series into the NSE, we obtain the fol-
lowing Galerkin approximation to the NSE:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
d

dt
+

1
Re

|k|2
)

ûl(k) = −i kl p̂(k) −
3∑

j=1

[ûj ul,j ](k) + f̂l(k), l = 1, 2, 3,

i
3∑

j=1

kj ûj(k) = 0,

(12.14)

for N/2 ≤ kj ≤ N/2 − 1, j = 1, 2, 3. We mention that the pressure can be
eliminated from (12.14) by multiplying the first equation in (12.14) by i kl
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and summing over l (the equivalent of taking the divergence of the NSE in
physical space). This yields

p̂(k) = −i

3∑
j=1

kj f̂j(k)
|k|2 ,

which is exactly the solution of the Poisson equation for pressure in Fourier
space. Thus, the conservation of mass can be incorporated directly into the
conservation of momentum by eliminating pressure:

dûl

dt
(k) = f̂l(k) − kl

3∑
j=1

kj f̂j(k)
|k|2 − 1

Re
|k|2 ûl(k) −

3∑
j=1

[ûj ul,j](k),

for l = 1, 2, 3. (12.15)

Therefore, we need to explicitly store and solve only for the velocity field.

Remark 12.4. We note that the numerical treatment of the quadratic nonlin-
earity due to the convective term needs care. This is the source of the well-
known aliasing error : energy from outside the truncated range of wavenum-
bers is mapped back onto the truncated range. The most common remedy for
the aliasing error is the “3/2 rule” (see [54] for alternative techniques).

With this rule, the above equations become a system of ordinary equations
in time, which needs to be solved for each Fourier coefficient.

12.3.2 Initial Conditions

In general, the initial velocity field for isotropic turbulence must satisfy at
least three conditions:

• conservation of mass;
• real function of space and time;
• realistic energy spectrum.

The first two conditions are required in order to obtain a stable numerical
solution. The third condition is required to reduce the initial transient of the
flow to realistic isotropic turbulence. Actually, one also needs to specify the
relative phases of the modes. Since this information is not available in practice,
the initial velocity fields are usually constructed with random phases, while
having a prescribed initial energy spectrum. Since these random phases do
not resemble those encountered in isotropic turbulence, this initial condition
will lead to a transient in which the phases adjust themselves to appropriate
values.
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12.3.3 Experimental Results

Results on the decay of isotropic turbulence were provided by the experi-
ment of Comte-Bellot and Corrsin [70]. They simulated isotropic turbulence
in a wind tunnel by passing the flow through a grid of square rods (see Baren-
blatt [15] for an explanation). Conceptually, isotropic homogeneous turbulence
decays in time. However, in the wind tunnel of this experiment, the turbulence
decays in space as it evolves downstream. In order to convert to a temporal
decay, the authors make use of Taylor’s hypothesis (or the frozen turbulence
approximation, (6.203) in Pope [258]), in which the decay of turbulence in
space is related to the decay in time of a fictitious box of homogeneous turbu-
lence. The accuracy of Taylor’s hypothesis depends both on the properties of
the flow and on the statistic being measured. In grid turbulence with u′ ! 〈u〉,
it is quite accurate. In free shear flows, however, many experiments have shown
Taylor’s hypothesis to fail. For more details, the reader is referred to pp. 223,
224 in Pope [258] and the references therein.

The experiment of Comte-Bellot and Corrsin clearly displays a k−5/3 decay
in the inertial range as well as the dissipating range of scales at very large
wavenumbers. The inertial range is the region displaying the energy cascade,
described in Chap. 3: energy is transferred in the average from large scales
to smaller and smaller scales. We should notice that, as we have seen in
Sect. 12.2.9, the local inverse phenomenon of transferring energy from small
to large scales (backscatter) can be significant.

If one wishes to simulate the experiment of Comte-Bellot and Corrsin,
then one needs, at the very least, to construct an initial condition that has
the same spectrum.

12.3.4 Computational Cost

The computational cost of a simulation is largely determined by the resolu-
tion requirements. The box size must be large enough to represent the energy-
containing motions. The grid size must be small enough to represent the dissi-
pative scales. Moreover, the time-step used to advance the solution is limited
by considerations of numerical accuracy.

Based on the above requirements, Pope [258] presented an analysis of
the computational cost for the DNS of isotropic homogeneous turbulence.
The number of floating-point operations required to perform a simulation is
proportional to the product of the number of modes and the number of steps,
which was estimated as 160 Re3 (Pope [258], pp. 348, 349). Assuming that
1 000 floating point operations are needed per mode per time-step, the time
in days, TG, needed to perform a simulation at a computing rate of 1 gigaflop
is given by

TG ≈
(

Re

800

)3

. (12.16)
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This estimate matches the practical findings (Fig. 9.3 in Pope [258]).
The obvious conclusion from this estimate is that the computational cost

increases so steeply with Re that it is impractical to go much higher than
Re ≈ 1 500 with gigaflop computers. This estimate also gives an estimate for
the factor of improvement needed to perform a DNS for Re = 1.5 · 105 in one
day: one million fold.

With this analysis, we can conclude that DNS of even simple, isotropic tur-
bulence such as the Comte-Bellot and Corrsin experiment can quickly become
impractical. It also means that DNS of practical, engineering or geophysical
flows is entirely impractical and will likely remain so for the foreseeable future.

However, there is hope: the analysis on p.349 in Pope [258] shows that, in
a well-resolved simulation, less than 0.02% of the modes represent motions in
the energy-containing or in the inertial subrange.

12.3.5 LES of the Comte-Bellot Corrsin Experiment

The initial condition for the LES is constructed by using the energy spectrum
in the Comte-Bellot Corrsin experiment. An important fact when constructing
the initial condition is that the turbulent kinetic energy computed from the
LES field will not equal that of the experiment. The reason is that only the
portion of the spectrum from k = 0 to k = N/2 is available in the simulation.
Thus, in comparing the simulation and the experiment, we must also filter
the experimental results. Numerical results for the LES of the Comte-Bellot
and Corrsin experiment are presented in [69].

The first LES for the decay of free isotropic homogeneous turbulence were
performed more than twenty years ago [62] with coarse resolutions (163 and
323 grid points) with satisfactory results [14]. Higher resolution simulations
(1283 grid points) have been performed recently, yielding improved results
[215, 235].

Although the decay of free isotropic homogeneous turbulence is the sim-
plest LES test case, it has complex dynamics resulting from the interaction of
many elongated vortex structures called “worms” (Fig. 11.1 in Sagaut [267]).
Thus, a good LES model should reflect the correct dynamics of these struc-
tures.

12.4 Final Remarks

In this chapter, we have presented two of the most popular test problems
for the validation and testing of LES models: turbulent channel flow and the
decay of free isotropic homogeneous turbulence. Once a new LES model is
created, it should be tried first in these two settings.

These two tests, however, are by no means the ultimate criteria for the
success of an LES model. In fact, an LES model could perform well for one
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test case, and poorly for the other. For example, a classical eddy viscosity LES
model, such as Smagorinsky [277] could yield very good results for the decay
of free isotropic homogeneous turbulence, but it could yield poor results in
the numerical simulation of turbulent channel flows.

Then how do we decide whether an LES model is good or not? The answer
to this question is that, most probably, there is no universally best LES model.
For each application (or class of applications) of interest there is usually an
LES model that outperforms the others, although the same model could fail to
produce the desired results in other applications. By testing the LES model
on as many test problems as possible, one can gain better insight into the
qualities and drawbacks of the model, and possibly devise better, improved
LES models.



References

1. M. Abramowitz and I.A. Stegun. Handbook of mathematical functions with
formulas, graphs, and mathematical tables, volume 55 of National Bureau of
Standards Applied Mathematics Series. For sale by the Superintendent of Doc-
uments, U.S. Government Printing Office, Washington, D.C., 1964.

2. N.A. Adams and S. Stolz. Deconvolution methods for subgrid-scale approx-
imation in large-eddy simulation. In B. Geurts, editor, Modern Simulation
Strategies for Turbulent Flow, pages 21–41. R.T. Edwards, 2001.

3. N.A. Adams and S. Stolz. A subgrid-scale deconvolution approach for shock
capturing. J. Comput. Phys., 178(2):391–426, 2002.

4. R.A. Adams. Sobolev spaces. Academic Press, New York-London, 1975. Pure
and Applied Mathematics, Vol. 65.

5. S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for
solutions of elliptic partial differential equations satisfying general boundary
conditions. I. Comm. Pure Appl. Math., 12:623–727, 1959.

6. S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for
solutions of elliptic partial differential equations satisfying general boundary
conditions. II. Comm. Pure Appl. Math., 17:35–92, 1964.

7. A.A. Aldama. Filtering techniques for turbulent flow simulation. In Springer
Lecture Notes in Eng., volume 56. Springer, Berlin, 1990.

8. M. Anitescu, W.J. Layton, and F. Pahlevani. Implicit for local effects and
explicit for nonlocal effects is unconditionally stable. Electron. Trans. Numer.
Anal., 18:174–187 (electronic), 2004.
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son, Paris, 1983. Théorie et applications. [Theory and applications.].

46. F.E. Browder. Nonlinear elliptic boundary value problems. Bull. Amer. Math.
Soc., 69:862–874, 1963.

47. R.M. Brown, P. Perry, and Z. Shen. The additive turbulent decomposition for
the two-dimensional incompressible Navier-Stokes equations: convergence the-
orems and error estimates. SIAM J. Appl. Math., 59(1):139–155 (electronic),
1999.

48. W.H. Cabot. Large-eddy simulations with wall models. In Annual Research
Briefs, pages 41–58. Center for Turbulence Research, Stanford, 1995.

49. W.H. Cabot. Near-wall models in large eddy simulations of flow behind a
backward-facing step. In Annual Research Briefs, pages 199–210. Center for
Turbulence Research, Stanford, 1996.



330 References
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